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Preface

From time immemorial, the security realm and personal identification task had

shown progress by employing technological means like secret knowledge as pass-

words and Personal Identification Numbers, and by using personal possessions as

identity cards and Radio Frequency Identification chips. As opposed to these means

which are generally easy targets for circulation and fraud, biometric traits (or modal-

ities) like facial geometry, iris, voice timbre, and biological DNA are universal,

difficult to copy, and for most, consistent over time with no expiration date and

comfortable to use. The purpose of this book is to provide an up-to-date ample cov-

erage of theoretical and experimental state-of-the-art work as well as new trends and

directions in the biometrics field.

The biometrics field – the science of measuring physical properties of human

beings – has marked a substantial leap over the past two decades. It will continue

to climb, as a result of a strong demand from both the private sector and govern-

mental agencies, on an ever ramping curve until practical objectives are achieved

in terms of high accuracy, ease of use, and low-cost. As the cost of biometric sen-

sors – visible, multispectral and thermal imagers, microphones, capacitive, pressure

and motion sensors – continues to sink due to higher demand, biometric systems

have the tendency to employ more than a single sensor to capture and identify an

individual upon as many as nonredundant biometric traits.

While this book covers a range of biometric traits including facial geometry, 3D

ear form, fingerprints, vein structure, voice, and gait, its main emphasis is placed

on multisensory and multimodal face biometrics algorithms and systems. By “mul-

tisensory” we refer to combining data from two or more biometric sensors, such as

synchronized reflectance-based and temperature-based face images. Likewise, by

“multimodal” biometrics, we refer to fusing two or more biometric modalities, like

face images and voice timber. These two multisensory and multimodal aspects, as

they pertain to face Biometrics, are covered in details in the course of this book. Re-

ported experimental results support the idea that adequate fusion of complementary

biometric data is a step in the right direction to remedy to the limitations of existing

uni-sensor and uni-modal biometric systems.

This book contains four distinctive parts and a brief introduction chapter. The

latter places the reader into the context of the book’s terminologies, motivations, ad-

dressed problems, and summary of solutions portrayed in the remaining 12 chapters.

The basic fact that a high performance multibiometrics system is hard to achieve
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without maximizing the performance of each sensor and each modality indepen-

dently, led us to reserve all four chapters of the first part to address new and
emerging face biometrics. Emphasis is placed on biometric systems where single

sensor and single modality are employed in challenging imaging conditions, like

high magnification, illumination changes, head pose variations, and facial complex-

ity over age progression. Higher levels of illumination tolerance were achieved by

merging correlation filters with linear subspace methods. Pose variations were add-

ressed in a multisample approach, integrating motion, lighting and shape in video

data. Space and time variations were addressed in two separate chapters. One

chapter looked at the effects of long distance and large zoom on the recognition

of faces with the design of quality measures and restoration algorithms to remedy

to degradations caused by magnification blur. The other chapter focused on time

lapses between gallery and probe face images using a Bayesian age difference clas-

sifier to determine the age difference between pairs of face images. The second part

on multisensory face biometrics is composed of three chapters. It addresses the per-

sonal identification task in challenging variable illuminations and outdoor operating

scenarios by employing visible and thermal sensors. Various fusion approaches to

counter illumination challenges are addressed and their performances compared.

By fusing thermal and visible face data in the presence of eyeglasses and large pose

variations, higher recognition rates are achieved as compared to the use of single

sensors. Visual imagery is even mixed with physiological traits from vein structure

emanating from thermal imagery. Thermal Minutia Points on the vein structure are

shown to be specific to each individual and used for recognition in combination

with the visible facial data. The third part of the book focuses on multimodal face
biometrics by integrating voice, ear, and gait modalities with facial data. It presents

numerous novel methodologies to combine 3D and 2D face data with ear forms, face

profile images with gait silhouette templates, and finally speaker voice with face im-

ages. The fusion technique of these last two modalities is presented in chapter nine.

Experimental validation is performed in the framework of a user verification system

on a handheld cell device. It showed that this bimodal biometrics system signifi-

cantly outperformed, in terms of the Equal Error Rate, voice-based, and face-based

biometrics systems. The last part presents two generic chapters on multibiometrics

fusion methodologies and performance prediction techniques. An excellent render-

ing of the different classes and advantages of multibiometrics systems is given and

five different levels of fusion are discussed. The computation of performance bounds

of multibiometrics systems is also formulated by modeling the realizations of bio-

metric signatures as those of a random process and using the fidelity and desired

error rate of the system as guides.

This practical reference offers students and software engineers a thorough un-

derstanding of how some core low-level building blocks of a multibiometric system

are implemented. It contains enough material to fill a two-semester upper-division

or advanced graduate course in the field of biometrics, face recognition, data fusion

and human–computer interaction in general. The University of Tennessee’s Imaging

Robotics and Intelligent Systems Laboratory is already planning to assign selected
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chapters for a graduate class on multisensory data fusion and biometrics systems.

Scientist and teachers will find in-depth coverage of recent state-of-the-art face bio-

metrics algorithms and experiments. Moreover, the book helps readers of all levels

understand the motivations, activities, trends, and directions of researchers and en-

gineers in the biometrics field in today’s market, and offers them a view of the future

of this rapidly evolving technological area. However, reading through the details of

the algorithms in this book requires a basic knowledge in biometrics, pattern recog-

nition, computer vision, signal processing, and statistics.

This effort could not have been achieved without the excellent scientific con-

tributions made by a number of pioneering scientists and experts in the biometrics

field. We are thankful for their participation and the support of their institutions:

O. Arandjelovic and R. Cipolla with University of Cambridge, UK; V. Asari and

S. Gundimada with Old Dominion University; B. Bhanu, A.R. Chowdhury, Y. Xu,

and X. Zhou with University of California, Riverside; P. Buddharaju, I. Kakadiaris,

N. Murtuza, G. Passalis, I. Pavlidis, T. Theoharis, and G. Toderici with Univer-
sity of Houston; R. Chellappa and N. Ramanathan with University of Maryland;

J. Han with Lawrence Berkeley National Laboratory; T.J. Hazen and A. Park with

Massachusetts Institute of Technology; B. Heisele with Honda Research Institute;

A. K. Jain with Michigan State University; D.P. Khosla, V. Kumar, and M. Savvides

with Carnegie Mellon University; J. Ming with Queen’s University, Belfast;
J.A. O’Sullivan with Washington University; A. Ross and N.A. Schmid with West
Virginia University; E. Weinstein with New York University; L.B. Wolff with

Equinox Corporation; and Y. Yao with The University of Tennessee. Their

expertise, contributions, feedbacks, and reviewing added significant value to this

groundbreaking resource.

We are also very grateful to Diego Socolinsky, Andrea Salgian, and Andreas

Koschan for their valuable corrections and comments. We would like to extend

thanks to all folks at Springer-Verlag, and in particular to Christoph Baumann and

Dieter Merkle for their warm support.

August 14, 2006 Riad I. Hammoud

Delphi Electronics & Safety,

Besma R. Abidi

The University of Tennessee,

Mongi A. Abidi

The University of Tennessee
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Ognjen Arandjelović, Riad Hammoud, and Roberto Cipolla . . . . . . . . . . . . . . . 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 Mono-Sensor Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.2 Multi-Sensor Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Method Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Matching Image Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Data Preprocessing and Feature Extraction . . . . . . . . . . . . . . . . . . . 79

6.2.3 Single Modality-Based Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.4 Fusing Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.5 Dealing with Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Contents XIII

6.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Multispectral Face Recognition: Fusion of Visual Imagery
with Physiological Information
Pradeep Buddharaju and Ioannis Pavlidis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Physiological Feature Extraction from Thermal Images . . . . . . . . . . . . . . . 92

7.2.1 Face Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.2 Segmentation of Superficial Blood Vessels . . . . . . . . . . . . . . . . . . . 96

7.2.3 Extraction of TMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.4 Matching of TMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 PCA-Based Feature Extraction from Visual Images . . . . . . . . . . . . . . . . . . 102

7.4 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Feature Selection for Improved Face Recognition
in Multisensor Images
Satyanadh Gundimada and Vijayan Asari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1.1 Sensors and Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1.3 Proposed Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.1.4 Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Phase Congruency Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.4 Image Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.4.1 Data Level Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.4.2 Decision Level Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Part III Multimodal Face Biometrics

9 Multimodal Face and Speaker Identification
for Mobile Devices
Timothy J. Hazen, Eugene Weinstein, Bernd Heisele, Alex Park, and Ji Ming . . 123

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Person Identification Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.2.1 Speaker Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.2.2 Face Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.2.3 Multimodal Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.3 Multimodal Person ID on a Handheld Device . . . . . . . . . . . . . . . . . . . . . . . 128

9.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



XIV Contents

9.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.3.4 Face Detection Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.4 The Use of Dynamic Lip-Motion Information . . . . . . . . . . . . . . . . . . . . . . . 132

9.5 Noise Robust Speaker Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.5.1 The Posterior Union Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.5.2 Universal Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10 Quo Vadis: 3D Face and Ear Recognition?
I. Kakadiaris, G. Passalis, G. Toderici, N. Murtuza, and T. Theoharis . . . . . . . 139

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.2.1 Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.2.2 Ear Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.3.1 Generic 3D-Driven Recognition System . . . . . . . . . . . . . . . . . . . . . 142

10.3.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.3.3 Annotated Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.3.4 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.3.5 Deformable Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.3.6 Geometry Image Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.3.7 Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10.4 3D Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10.4.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.4.4 3D Face Recognition Hardware Prototype . . . . . . . . . . . . . . . . . . . . 156

10.5 3D Ear Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10.5.1 Ear-Specific Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10.5.2 Annotated Ear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.5.3 Ear-Specific Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10.5.4 3D Ear Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

11 Human Recognition at a Distance in Video by Integrating
Face Profile and Gait
Xiaoli Zhou, Bir Bhanu, and Ju Han . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

11.2 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

11.2.1 High-Resolution Image Construction for Face Profile . . . . . . . . . . 167

11.2.2 Face Profile Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



Contents XV

11.2.3 Gait Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

11.2.4 Integrating Face Profile and Gait for Recognition at a Distance . . 177

11.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

11.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

11.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Part IV Generic Approaches to Multibiometric Systems

12 Fusion Techniques in Multibiometric Systems
Arun Ross and Anil K. Jain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

12.2 Multibiometric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

12.3 Taxonomy of Multibiometric Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

12.4 Levels of Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12.4.1 Sensor-Level Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12.4.2 Feature-Level Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

12.4.3 Score-Level Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

12.4.4 Rank-Level Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

12.4.5 Decision-Level Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

13 Performance Prediction Methodology for Multibiometric Systems
Natalia A. Schmid and Joseph A. O’Sullivan . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

13.2 Stochastic Model for Multimodal Biometric Signatures . . . . . . . . . . . . . . . 215

13.3 Performance of a Multimodal Biometric Recognition

System with M Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

13.3.1 Exponential Error Rate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

13.4 Recognition Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

13.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

13.5.1 M-ary Gaussian Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

13.5.2 Capacity of the Multimodal System Based on PCA

Signatures of the Face and Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

13.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Part V Acknowledgments, Biographies, References and Index items

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273



1 Introduction

Lawrence B. Wolff

1.1 Motivations, General Addressed Problems,
Trends, Terminologies

Development of face recognition systems that will exhibit high performance under

most real world circumstances is an extremely challenging endeavor. Amongst the

phenomenology and effects that confound such systems are variations due to illumi-

nation, facial expression, pose, aging, partial occlusion, optical blurring, and noise

degradation. And this does not even touch upon the more insidious problems inher-

ent to recognition of evasive subjects. Fortunately researchers today have at their

disposal a more diverse arsenal of higher quality sensors than their counterparts of

20 years ago. It is natural and perhaps even of compelling necessity to explore how

multiple sources of information from different sensors and different biometrics can

be brought to bear to more effectively tackle this demanding challenge. Such is the

subject matter of this book comprised of an edited collection of chapters that reflect

some of the latest trends in this area.

It is well known from other engineering application areas that the fusing of mul-

tiple sources of information does not guarantee a superior solution to the problem

at hand, particularly if these sources of information are highly correlated or can be

derived from one another. At the least they must separately provide complementary

measurement data. In recent years there have been largely three categories of ap-

proaches to face recognition for obtaining complementary information that can be

loosely termed multisample, multisensor, and multimodal. In the first category data

is acquired with the same sensor measuring the same biometric but under different

conditions such as varying facial expression, illumination, pose or over different

points in time. Also frequently employed are image frames extracted from contin-

uous video sequences of a dynamic subject. Technically speaking almost all face

recognition systems use with varying degree some form of multiple sampling, for

instance, in a gallery with two or more images of the same subject. The ability to

exploit the diversity of images representing a subject in a gallery and/or in a probe

set strongly influences the overall performance of the system. In the second category

two or more different sensors are used which can include nonimaging sensors such

as 3D range measurement. As thermal imaging measures emissive properties com-

plementary to reflective properties measured by conventional video cameras, fused

combinations of visible and thermal imaging for face recognition has become very
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popular over the last few years driven in part by thermal cameras becoming more

prevalent with decreasing cost. More recently a couple of research groups have fur-

ther combined this with 3D geometric data. The complementarity of visible imaging

with near-infrared and SWIR imaging has also been used for face recognition. Not

surprisingly the best multisensor face recognition systems are the ones that also ex-

ploit the use of multisample. The third category of approaches, multimodal refers to

complementary information obtained by combining face with other biometrics such

as fingerprint, iris, voice, gait, and ear.

Biometric systems are beginning to take root in mainstream parts of society.

Fingerprint readers are becoming more common as password access to desktop

and laptop computers. Physical access control systems using fingerprint and/or

face recognition are also more common. Some airlines have instituted voluntary

enrollment “trusted passenger” programs for expediting boarding and immigration

processing for individuals with electronically readable identity card containing bio-

metric data. Depending upon the program these identity cards contain some subset

of various combinations of fingerprint, face, and iris biometric data, in a sense al-

ready applying rudimentary multimodal fusion. Some countries are in the process

of incorporating RFID sensors containing similar biometric information into pass-

ports. And then there are national identification cards containing same that are under

controversial debate. Related is biometric technology incorporated into future driver

licenses to aid in law enforcement. However with all these technological advances

just mentioned there still is one important capability lacking; passive (i.e., com-

pletely noninvasive) identification of a subject at a significant stand-off distance. It

is this capability that face recognition biometrics currently offers a large hope of

achieving, and it is information fusion that bolsters this potential.

1.2 Inside This Book

Part I of this book discusses new emerging technologies for face recognition, gen-

erally having a bearing on different aspects of multisampling over time and space

and even image synthesis resulting from this type of fusion. Chapter 2 presents a

novel technique for comparing the multisampling from images obtained from video

sequences both real and synthesized using a motion and illumination model. Para-

meters are estimated for the illumination model under which a probe video sequence

is taken of a subject. Pose of the face is also estimated for each image in the probe

video sequence. The gallery consists of 3D face models that were derived from pre-

viously obtained video sequences. From these 3D face models, video sequences of

each subject in the gallery can be synthesized under the same illumination modeling

and pose conditions as for the probe video sequences. Thus real probe video se-

quences can be directly compared with synthesized gallery video sequences adapt-

ing to general illumination and motion conditions. This paper illustrates the way

multisample fusion can be effectively utilized for face recognition at different lev-

els. Implicit to this paper (but referenced and described in other papers) is derivation

of 3D face models from fusion of 2D images in video sequences.
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Chapters 3 and 4 do not explicitly discuss use of fusion but they represent

important aspects of video face recognition just beginning to be explored that can be

of large significance to multisample fusion systems. Chapter 3 presents a Bayesian

age-difference classifier to recognize adult subjects imaged over protracted peri-

ods of time up to a decade. They also propose a craniofacial growth model to pre-

dict intrapersonal variations in children and younger adults for video images taken

across long periods of time. Face recognition being such a young discipline has not

yet had the opportunity to fully exploit conglomerate biometric information over

long periods of time, but this is certainly an area that is receiving more and more

attention. Chapter 4 discusses methods for compensating degraded optical effects

from video imaging over long distances. Not much work has been done for face

recognition of subjects at large distances over 100 m where atmospheric effects as

well as reduction in MTF due to high lens magnification become significant issues.

The authors use an adaptive sharpness measure with special metric to evaluate the

level of how degraded a face image appears. They identify multiscale processing

based on wavelet transforms for image enhancement to be the most effective for im-

proving performance of the FaceIt algorithm. Although not discussed in this chapter

one can speculate how multisampling can aid in increasing face recognition perfor-

mance at such remote stand-off distances for which there are a number of practical

applications.

Chapter 5, the last in Part I, develops a new filter method for face recognition that

is robust to handling variations in appearance of multisample images in both the

gallery and probe sets. The authors develop a theory based upon the observation

that PCA on face images in the Fourier domain, when restricted to phase spectrums,

both encodes key discrimination detail and is tolerant to changes in illumination and

occlusion (i.e., partial faces). The component eigenphases are formulated into a filter

bank to make them shift invariant, and therefore tolerant to face image registration

shifts, resulting in a hybrid PCA-correlation filter which is dubbed CoreFaces. The

performance of this is compared to a popular advanced correlation filter on the CMU

PIE face database.

Part II on multisensor fusion emphasizes the use of visible and thermal infrared

imaging for face recognition. Well known already are the advantages of comple-

mentary phenomenology of imaging in the visible and thermal infrared spectrums

for face recognition. Human skin has high emissivity in the MWIR (3–5 μm) spec-

trum and even higher emissivity in the LWIR (8–14 μm) spectrum making face

imagery by and large invariant to illumination variations in these spectrums. Illu-

mination invariance is strongest under most indoor environments. In outdoor envi-

ronments particularly in direct sunlight illumination invariance only holds true to

good approximation for LWIR which fortunately is measured by the less expen-

sive uncooled thermal infrared camera technology. Another advantage of thermal

infrared imaging of the face is it is more direct relationship to underlying physical

anatomy such as vasculature. On the other hand glass and most plastics are opaque

in the thermal infrared; a significant hinderance to face imaging as approximately

one-third of the US population wears glasses. For a large proportion of individuals
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this occludes the regions around the eyes a key area of the face for image registra-

tion and face discrimination. This is one aspect of why fusion with visible imaging

is of great assistance. Visible imaging of the face is also less affected by activity

variation than is thermal imaging. Visible and thermal sensors are well-matched

candidates for image fusion as limitations of imaging in one spectrum seem to be

precisely the strengths of imaging in the other. Research conducted over the past

several years has shown that visible/thermal infrared image fusion for face recog-

nition significantly boosts performance even when performance respective to each

of the individual imaging spectrums is mediocre. An important issue for this very

promising technology is the use of legacy image data such as passport and driver

license photographs for training. The lack of any current standard for producing

thermal infrared legacy imaging data has lead a number of researchers to speculate

whether it is possible to synthesize a thermal image of the face of a subject from a

visible image. Interestingly enough the ability to create a thermal image of a subject

from its visible counterpart is at odds with the complementary nature of these two

imaging spectrums which appear to be uncorrelated. Indeed if thermal signatures of

the face could be derived from visible signatures this must use techniques that do not

contradict the mounting number of ways that features from visible/thermal images

can be fused to boost recognition performance. At present it seems that enrollment

of both visible and thermal imagery is required to implement such systems.

The three chapters in Part II reflect an important trend in advancing the state-

of-the-art of visible/thermal face recognition, namely explorations into what fea-

tures to select and at what level(s) information fusion needs to occur to optimize

performance. Section 12.4 of Chap. 12 is a good place to review the taxonomy of

levels of information fusion. Chapter 6 innovates a match score level fusion scheme

which adapts the weighting of visible and thermal image spectrum similarity scores

according to how useful information is computed to be contained in the visible

spectrum image. This is determined by how much variation in illumination exists

between probe and gallery images and how much it is compensated for by pre-

processing. Probability density functions estimated offline on the training corpus

contribute to this weighting function. The component similarity scores for visible

and thermal are in turn determined by a weighted combination of local mouth and

eye image regions, and the entire face image region similarities. A glasses detector is

used to determine whether the eye region should be weighted zero in the thermal im-

age component similarity score due to occlusion. Optimal values for these weights

are also computed on the training set. Prior to computing scores optimal band-pass

filters are used to preprocess visible and thermal images. Chapter 7 proposes visi-

ble/thermal image fusion that uses two completely different techniques for deriving

similarity scores separately for the visible and the thermal domains. On thermal

images thermal minutia points (TMP) are extracted from segmentation of face vas-

culature and these points are matched between gallery and probe images to derive a

similarity score. On visible images classical PCA is used. The similarity scores are

combined although it is not specified how. Lastly, Chap. 8 compares performance
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of different levels of information fusion on a neighborhood-based feature selection

method with a phase congruency feature method.

Part III of this book is on multimodal fusion, combining face with other biomet-

ric information. While biometric recognition technology using fingerprints or iris is

more mature, multimodal fusion of face recognition with these other biometrics has

enormous tradeoffs in practice. Face recognition from the start has claimed as an ad-

vantage that it is a stand-off, passive and relatively noninvasive technology at least

in the days when only video cameras were used to acquire data. This still remains

true with the use of multiple sensors passively imaging in different spectrums such

as Near-IR and thermal. However fingerprint requires physical contact and iris a

close-in view in turn requiring significant cooperation and restriction of the subject.

This is compatible with access control systems where frontal face recognition by

itself already works quite well under typically controlled environments. Multimodal

fusion with face recognition seems to become of increasing value when additional

biometric information complements face data under some of the most problematic

conditions for face recognition such as oblique pose. Perhaps this is why the recent

surge in interest of using multi modal fusion of face data with ear and gait biomet-

rics as described in Chaps. 10 and 11 of Part III. Measurements of ear and/or gait

are accessible at high angles away from frontal face position and can be obtained

using passive imaging. Voice can also be passively measured and Chap. 9 in Part III

describes fusion of face and voice from on a single small device.

Finally Part IV of the book consists of two chapters on generic techniques for

data fusion with application to multibiometric systems. Chapter 12 expounds fur-

ther on the general taxonomy of data fusion for biometric recognition. Chapter 13

describes a general framework for determining the performance of multibiometric

fusion based upon likelihood models.

1.3 Evaluation of This Book

So how far does the work presented in this book advance the practical state-of-the-

art? To try to answer this question in the concrete, put this into context of solving

the following benchmark example problem which could be put to good use in many

practical applications; Consider the problem of developing an end-to-end system for

recognizing individuals outdoors, at different times of day, at a distance of several

hundred feet, and who can be walking, standing, or sitting at arbitrary pose. To

simplify matters the individuals are limited to a specific group of about 100 subjects.

An easier version of this problem is having legacy data for each subject obtained

under controlled conditions – the harder version is learning/training on-the-fly. Even

under the easiest circumstances for this problem scenario it is fair to say that the

ability of an end-to-end system to have a first rank match recognition performance

of 90% or above is still well out of reach at present day. The chapters in this book

can be effectively used to advance insights and address the right issues towards

solving isolated components of this example problem. Analyzing different levels

at which information fusion occurs, illumination normalization, synthesizing pose
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variations, and accounting for optical effects, are all critical components. Adding

passive biometrics can augment an effective solution. These different components

have been further advanced and should encourage more work in their respective

aspects. Peak performance has not yet been nearly saturated and more study at the

component level is required.

The major challenge ahead is in combining these component areas towards

achieving more complete practical systems. Experimentation needs to evolve more

away from environments typical for access control, where other existing biometrics

already work well, to more remote stand-off regimes where face recognition involv-

ing fusion techniques can potentially apply the most unique leverage. For instance,

attacking the problem of recognition under pose variations at large distances with

multisensor fusion has yet to be aggressively studied. No doubt developing more

complete fusion systems operating under a broader range of scenarios will risk lower

performance, at least initially. But such risks will be necessary to bring face recog-

nition more prominently into the realm of real world applications.



Part I

Space/Time Emerging Face Biometrics



2 Pose and Illumination Invariant Face Recognition
Using Video Sequences

Amit K. Roy-Chowdhury and Yilei Xu

2.1 Introduction

Pose and illumination variations remain a persistent problem in face recognition,

and has been documented in different studies [1, 2]. These two factors affect low-

level tasks like face registration and tracking, which, in turn, reduce the final accu-

racy of the recognition algorithms. Also, it is often difficult to estimate illumination

conditions accurately so as to factor them into the recognition strategies. Pose esti-

mation problems are often made difficult by the fact that illumination is unknown.

Therefore, it is extremely important to develop methods for face recognition that are

robust to variations in pose and illumination.

It is believed by many that video-based systems hold promise in certain applica-

tions where motion can be used as a cue for face segmentation and tracking, and the

presence of more data can increase recognition performance [1]. However, video-

based face recognition systems have their own challenges such as low resolution

of the face region, segmentation and tracking over time, 3D modeling, and devel-

oping measures for integrating information over the entire sequence. In this paper,

we present a novel framework for video-based face tracking and recognition that is

based on learning joint illumination and motion models from video, synthesizing

novel views based on the learned parameters, and designing metrics that can com-

pare two time sequences while being robust to outliers. We show experimentally

that our method achieves high identification rates under extreme changes of pose

and illumination.

2.1.1 Overview of the Approach

The underlying concept of this paper is a method for learning joint illumination

and motion models of objects from video. The application focus is on video-based

face recognition where the learned models are used to (1) automatically and accu-

rately track the face in the video, and (2) synthesize novel views under different

pose and illumination conditions. We can handle a variety of lighting conditions,

including the presence of multiple and extended light sources, which is natural in

outdoor environments (where face recognition performance is still poor [1–3]). We

can also handle gradual and sudden changes of lighting patterns overtime. This is

achieved using the spherical harmonics-based representation of illumination [4, 5]

and our previous work that integrates motion and illumination models for video
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analysis [6]. In [4,5], the reflectance image was represented using a linear combina-

tion of spherical harmonics basis functions. For Lambertian objects, a ninth-order

expansion was deemed sufficient to capture most of the energy in the signal, while

non-Lambertian objects required higher order coefficients. In [6,7], we showed that

the appearance of a moving object under arbitrary lighting could be represented

as bilinear combination of 3D motion and the spherical harmonics coefficients for

illumination.

This bilinear model of illumination and motion parameters allows us to develop

an algorithm for tracking a moving object with arbitrary illumination variations.

This is achieved by alternately projecting onto the appropriate motion and illumi-

nation bases of the bilinear space. In addition to the 3D motion estimates, we are

also able to recover the illumination conditions as a function of time, which allows

us to synthesize novel images under the same lighting conditions. The framework

does not assume any model for the variation of the illumination conditions – lighting

can change slowly or drastically and can originate from a combination of point and

extended sources. The method relies upon image differences and does not require
computation of correspondences between images. It leads to the development of an

illumination invariant model-based tracking algorithm that is initialized by register-

ing the model (e.g., a generic face model) to the first frame of the sequence.

The recognition algorithm proceeds as follows. We assume that a 3D model of

each face in the gallery is available. (We later show experimentally that an appro-

ximate 3D model with the correct texture is often good enough). Given a probe

sequence, we track the face automatically in the video sequence under arbitrary pose

and illumination conditions (as explained above). During the process, we also learn

the illumination model parameters. The learned parameters are used to synthesize

video sequences for each gallery under the motion and illumination conditions in the

probe. The distance between the probe and synthesized sequences is then computed

for each frame. Next, the synthesized sequence that is at a minimum distance from

the probe sequence is computed and is declared to be the identity of the person.

Robust distance measures are studied for this purpose.

Experimental evaluation is carried out on a database of 32 people that we col-

lected for this purpose. One of the challenges in video-based face recognition is the

lack of a good dataset, unlike in image-based approaches [1]. The dataset in [8] is

small and consists mostly of pose variations. The dataset described in [9] has large

pose variations under constant illumination, and illumination changes in natural

environments but mostly in fixed frontal/profile poses (these are essentially for gait

analysis). An ideal dataset for us would be similar to the CMU PIE dataset [10], but

with video sequences instead of discrete poses. This is the reason why we collected

our own data, which has large, simultaneous pose and illumination variations. We

are presently enlarging this dataset and adding expression variations.

2.1.2 Relation to Previous Work

We divide our survey of the relevant literature into two broad parts. First we look at

face recognition, especially the problem of pose and illumination variations. Next,



2 Pose and Illumination Invariant Face Recognition 11

we compare our joint illumination and motion models with other some approaches

that deal with illumination variations in motion analysis.

Face Recognition

Due to want of space, we refer the reader to a recent review paper for existing work

on face recognition [1]. A recently edited book [11] also deals with many of well-

known approaches for face processing, modeling, and recognition. For a comparison

of the performance of various face recognition algorithms on standard databases, the

reader can refer to [2, 3]. We will briefly review a few papers most directly related

to this work.

Recently there have been a number of algorithms for pose and/or illumination-

invariant face recognition, many of which are based on the fact that the image of

an object under varying illumination lies in a lower-dimensional linear subspace.

In [12], the authors propose to arrange physical lighting so that the acquired images

of each object can be directly used as the basis vectors of the low-dimensional lin-

ear space. In [13], the authors proposed a 3D spherical harmonic basis morphable

model (SHBMM) to implement a face recognition system given one single image

under arbitrary unknown lighting. Another morphable model-based face recogni-

tion algorithm was proposed in [14], but they use the Phong illumination model,

estimation of whose parameters can be more difficult than the spherical harmonics

model in the presence of multiple and extended light sources. In [15], a method was

proposed for using locality preserving projections (LPP) to eliminate the unwanted

variations resulting from changes in lighting, facial expression, and pose. The

authors in [16, 17] proposed to use Eigen light-fields and Fisher light-fields to do

pose invariant face recognition. They used generic training data and gallery images

to estimate the Eigen/Fisher light-field of the subject’s head, and then compare the

probe image and gallery light-fields to match the face. In [18], the authors used pho-

tometric stereo methods for face recognition under varying illumination and pose.

Their method requires iteration overall the poses in order to find the best match. Cor-

relation filters have been proposed for illumination-invariant face recognition from

still images in [19]. A novel method for multilinear independent component analy-

sis was proposed in [20] for pose and illumination-invariant face recognition. All of

these methods deal with recognition in a single image or across discrete poses and

do not consider continuous video sequences. The authors in [8] deal with the issue of

video-based face recognition, but concentrate mostly on pose variations. A method

for video-based face verification using correlation filters was proposed in [21]. The

advantage of using 3D models in face recognition has been highlighted in [22], but

their focus is on 3D models obtained directly from the sensors and not estimated

from video. This paper provides a method for learning the pose and illumination

conditions from video, using a 3D model that can be estimated from images.

Modeling Illumination Variations in Video

Learning the parameters of the joint illumination and motion space is a novel

contribution of this paper and we briefly review some related work. One of the
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well-known approaches for 2D motion estimation is optical flow [23]. However,

it involves the brightness constancy constraint, which is often violated in practice.

Many researchers have tried overcoming this by introducing an illumination vari-

ation term within the standard optical flow formulation. In [24], the author coined

the term “photometric motion” to define the intensity change of an image point due

to object rotation, and applied it to solve for shape and reflectance. In [25], a pa-

rameterized function was proposed to describe the movement of the image points

taking into account the illumination variation. In [26], the author combined the geo-

metric and photometric effects for flow computation and highlighted the need for

integrating the different variabilities in the process of image analysis. A method

for shape reconstruction of a moving object under arbitrary, unknown illumination,

assuming motion is known, was presented in [27]. Lighting changes were modeled

by introducing illumination-specific parameters into the standard optical flow equa-

tions in [28]. Illumination-invariant optical flow estimation was also the theme

of [29], where an energy function was proposed to account for illumination changes

and optimized using graph cuts. Another well-known approach for 2D motion esti-

mation in monocular sequences is the Kanade–Lucas–Tomasi (KLT) tracker [30],

which selects features that are optimal for tracking, and its extensions to handle

illumination variations [31]. All of these approaches deal with 2D motion estima-

tion that can handle only small changes in the pose of the object.

Our approach is illumination-invariant 3D motion estimation, while simultane-
ously learning the parameters of the model. The 2D motion obtained by any of the

above methods can be used along with the well-known structure from motion (SfM)

methods [32] to compute 3D motion and structure. However, the accuracy of the

3D estimates will be limited by the accuracy of the 2D motion estimates in the case

of lighting changes. As an alternative, model-based techniques have been used for

direct 3D motion estimation from video [33]. Many 3D model-based motion esti-

mation algorithms rely on optical flow for the 2D motion and most existing methods

are sensitive to lighting changes. The authors in [34] use probabilistic models and

particle filters within a Bayesian framework to robustly track the human body, thus

accounting for moderate illumination variations indirectly. A related work is [35],

which uses SfM with photometric stereo to estimate surface structure. However, all

the frames are needed a priori and an orthographic camera is assumed. Illumination-

invariant motion estimation is possible within the active appearance model frame-

work [36, 37], but the method requires training images under different illumination

conditions. While these methods can handle illumination variations within the video

sequence, they are not able to explicitly recover the illumination conditions of each

frame in the video.

In [4, 5], the authors independently derived a low order (9D) spherical

harmonics-based linear representation to accurately approximate the reflectance

images produced by a Lambertian object with attached shadows. This was an

approximation of the infinite-dimensional convex cone representation derived in

[38]. All of these methods work only for a single image of an object that is fixed

relative to the camera, and do not account for changes in appearance due to motion.
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We proposed a framework in [6, 7] for integrating the spherical harmonics-based

illumination model with the motion of the objects leading to a bilinear model of

lighting and motion parameters. This approach to illumination modeling takes into

account the 3D shape of the object, which is in contrast to the 2D approaches for

handling illumination variation, like gradient orientation histograms [39], scale-

invariant feature transforms [40] and others [41, 42]. This is motivated by a number

of reasons. Our final goal is to estimate the 3D motion and shape of the objects, in

addition to the lighting conditions. Thus it makes sense to integrate the illumination

models with the 3D shape models. Secondly, a number of authors have shown that

2D approaches to handle illumination variations have limited ability due to lack of

knowledge of the underlying geometry of the object [43–45]. Thirdly, we not only

want to achieve illumination invariance, but also learn the parameters of the illumi-

nation models from video sequences. The 3D approaches to illumination modeling

allow this from video sequences of natural moving objects.

2.1.3 Organization of the Chapter

The rest of the paper is organized as follows. Section 2.2 presents a brief overview

of the theoretical result describing the bilinear model of joint motion and illumi-

nation variables. Section 2.3 describes the algorithm for learning the parameters of

the bilinear model. Section 2.4 describes our recognition algorithm. In Section 2.5

experimental results are presented. Section 2.6 concludes the paper and highlights

future work.

2.2 Integrating Illumination and Motion Models in Video

The authors in [4,5] proved that for a fixed Lambertian object, the set of reflectance

images can be approximated by a linear combination of the first nine spherical har-

monics, i.e.,

I(x, y) =
∑

i=0,1,2

∑
j=−i,−i+1...i−1,i

lijbij(n), (2.1)

where I is the reflectance intensity of the image pixel (x, y), i and j are the indica-

tors for the linear subspace dimension in the spherical harmonics representation, lij
is the illumination coefficient determined by the illumination direction, bij are the

basis images, and n is the unit norm vector at the reflection point. The basis images

can be represented in terms of the spherical harmonics as

bij(n) = ρriYij(n), i = 0, 1, 2; j = −i, . . . , i, (2.2)

where ρ is the albedo at the reflection point, ri is constant for each spherical har-

monics order, and Yij is the spherical harmonics function. For brevity, we will refer

to the work in [4] as the Lambertian reflectance linear subspace (LRLS) theory.

This result does not consider the relative motion between the object and the

camera. In [6], it was shown that for moving objects it is possible to approximate
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the sequence of images by a bilinear subspace. We exploit this result for 3D motion

estimation under arbitrarily varying illumination. We assume a perspective projec-

tion model for the camera, consider the focal length, f , of the camera as the only

intrinsic parameter (can be relaxed), and assume the reference frame to be attached

to the camera with the z-axis being along the optical axis. At time instance t1,

assume we know the 3D model of the object, its pose, and the illumination con-

dition in terms of the coefficients lt1ij . The ray from the optical center to the pixel

(x, y) intersects with the surface at P1. Define the motion of the object in the above

reference frame as the translation T =
[
Tx Ty Tz

]T
of the centroid of the object

and the rotation Ω =
[
ωx ωy ωz

]T
about the centroid. After the motion, P1 moves

to P1
′, and another point P2 moves to P2

′. At the new time instance t2, the direc-

tion of this ray does not change, and it intersects with the surface at P2
′. The new

illumination condition is represented in terms of the coefficients lt2ij . This is repre-

sented pictorially in Fig. 2.1.

The authors in [6] proved that reflectance image at new time instance t2 can be

expressed as:

I(x, y, t2) =
∑

i=0,1,2

∑
j=−i,−i+1...i−1,i

lt2ij bij(nP′
2
), (2.3)

where

bij(nP′
2
) = bij(nP1) + AT + BΩ. (2.4)

Fig. 2.1. Pictorial representation showing the motion of the object and its projection
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In (2.3), bij(nP′
2
) and lt2ij are the basis images and illumination coefficients after

motion. In (2.4), bij(nP1) are the original basis images before motion. A and B
contain the structure and camera intrinsic parameters. Substituting (2.4) into (2.3),

we see that the new image spans a bilinear space of six motion and approximately

nine illumination variables (for Lambertian objects). The basic result is valid for

general illumination conditions, but require consideration of higher order spherical

harmonics.

When the illumination changes gradually, we can use the Talyor series to app-

roximate the illumination coefficients as lt2ij = lt1ij + Δlij . Ignoring the higher order

terms, the bilinear space now becomes a combination of two linear subspaces, as

I(x, y, t2) = I(x, y, t1) +
∑

i=0,1,2

∑
j=−i,...,i

lt1ij (AT + BΩ)

+
∑

i=0,1,2

∑
j=−i,...,i

Δlijbij(nP1). (2.5)

If the illumination does not change from t1 to t2 (often a valid assumption for a short

interval of time), the new image at t2 spans a linear space of the motion variables,

since the third term in (2.5) is zero.

We can express the result in (2.3) succinctly using tensor notation as

I = (B + C ×2

(
T
Ω

)
) ×1 l, (2.6)

where ×n is called the mode-n product [20], and l ∈ R9 is the vector of lij com-

ponents. The mode-n product of a tensor A ∈ RI1×I2×...×In×...×IN by a vector

V ∈ R1×In , denoted by A×n V, is the I1 × I2 × . . . × 1 × . . . × IN tensor

(A×n V)i1...in−11in+1...iN
=
∑
in

ai1...in−1inin+1...iN
vin

.

For each pixel (p, q) in the image, Cklpq = [A B ] of size Nl × 6, where Nl is

the dimension of the illumination basis (Nl ≈ 9 for Lambertian objects). Thus for

an image of size M × N , C is Nl × 6 × M × N . B is a subtensor of dimension

Nl × 1 × M × N , comprising the basis images bij(nP1), and I is a subtensor of

dimension 1× 1×M ×N , representing the image. l is still the Nl × 1 vector of the

illumination coefficients.

These theoretical results can be used to synthesize video sequences of objects

under different conditions of lighting and motion. This would rely on computing

the basis images which are a function of the surface normal. In practice, the surface

normals are computed by finding the intersection of the ray passing through a pixel

with a 3D point, assuming that the 3D model is represented by a cloud of points.

The normal is then calculated by considering neighboring points. If a mesh model

of the object is used, the intersection of the ray with a triangular mesh is computed,

and the normal to this mesh patch is calculated.
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2.3 Learning Joint Illumination and Motion Models from Video

The joint illumination and motion space provides us with a novel method for

3D motion estimation under varying illumination. This is based on inverting the

generative model for motion and illumination modeling. It can not only track

the 3D motion under varying illumination, but also can estimate the illumination

parameters.

Equation (2.3) provides us an expression relating the reflectance image It2 with

new illumination coefficients lt2ij and motion variables m = [T,Ω]T , which lead to

a method for estimating 3D motion and illumination as:

(̂l, T̂, Ω̂) = arg min
l,T,Ω

‖It2 −
∑

i=0,1,2

i∑
j=−i

lijbij(nP′
2
)‖2,

= arg min
l,T,Ω

‖It2 − (Bt1 + Ct1 ×2

(
T
Ω

)
) ×1 l‖2, (2.7)

where x̂ denotes an estimate of x. The cost function is a square error norm, sim-

ilar to the famous bundle-adjustment [32], but incorporates an illumination term.

Motion and illumination estimates are obtained for each frame. Since the motion

between consecutive frames is small, but illumination can change suddenly, we add

a regularization term to the above cost function. It is of the form α||m||2.

Since the image It2 lies approximately in a bilinear space of illumination and

motion variables (ignoring the regularization term for now), such a minimization

problem can be achieved by alternately estimating the motion and illumination

parameters by projecting the video sequence onto the appropriate basis functions

derived from the bilinear space. Assuming that we have tracked the sequence upto

some frame for which we can estimate the motion (hence, pose) and illumination,

we calculate the basis images, bij , at the current pose, and write it in tensor form B.

Unfolding1 B and the image I along the first dimension [46], which is the illumina-

tion dimension, the image can be represented as:

IT
(1) = BT

(1)l. (2.8)

This is a least square problem, and the illumination l can be estimated as:

l̂ = (B(1)BT
(1))

−1B(1)IT
(1). (2.9)

Keeping the illumination coefficients fixed, the bilinear space in (2.3) and (2.4)

becomes a linear subspace, i.e.,

I = B ×1 l + (C ×1 l) ×2

(
T
Ω

)
. (2.10)

1 Assume an Nth-order tensor A ∈ CI1×I2×...×IN . The matrix unfolding A(n) ∈
CIn×(In+1In+2...IN I1I2...In−1) contains the element ai1i2...iN at the position with row

number in and column number equal to (in+1 − 1)In+2In+3 . . . INI1I2 . . . In−1 +
(in+2 − 1)In+3In+4 . . . INI1I2 . . . In−1 + · · · + (iN − 1)I1I2 . . . In−1 + (i1 −
1)I2I3 . . . In−1 + · · · + in−1.
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Similarly, unfolding all the tensors along the second dimension, which is the mo-

tion dimension, and adding the effect of the regularization term, T and Ω can be

estimated as:(
T̂
Ω̂

)
=
(
(C ×1 l)(2)(C ×1 l)T

(2) + αI
)−1

(C ×1 l)(2)(I − B ×1 l)T
(2), (2.11)

where I is an identity matrix of dimension 6 × 6. The above procedure for

estimation of the motion should proceed in an iterative manner, since B and C are

functions of the motion parameters. This should continue until the projection error

‖I − B ×1 l̂‖2 does not decrease further. This process of alternate minimization

leads to the local minimum of the cost function (which is quadratic in motion and

illumination variables) at each time step. This can be repeated for each subsequent

frame. We now describe the algorithm formally.

2.3.1 Algorithm

Consider a sequence of image frames It, t = 0, . . . , N − 1.

Initialization. Take one image of the object from the video sequence, register the

3D model onto this frame and map the texture onto the 3D model. Calculate the

tensor of the basis images B0 at this pose. Use (2.9) to estimate the illumination

coefficients. Now, assume that we know the motion and illumination estimates for

frame t, i.e., Tt,Ωt and lt.

– Step 1. Calculate the tensor form of the bilinear basis images Bt at the current

pose using (2.4). Use (2.11) to estimate the new pose from the estimated motion.

– Step 2. Assume illumination does not change, i.e., l̂t+1 = l̂t. Compute the

motion m by minimizing the difference between an input frame and the ren-

dered frame ‖It+1−
(
Bt + Ct ×2

(
T̂t+1

Ω̂t+1

))
×1 l̂t+1‖2, and estimate the new

pose.

– Step 3. Using the new pose estimate, re-estimate the illumination using (2.9).

Repeat Steps 1 and 2 with the new estimated l̂t+1 for that input frame, till the

error is below an acceptable threshold.

– Step 4. Set t = t + 1. Repeat Steps 1, 2, and 3.

– Step 5. Continue till t = N − 1.

In many practical situations, the illumination changes slowly within a sequence

(e.g., cloud covering the sun). In this case, we use the expression in (2.5) instead of

(2.3) and (2.4) in the cost function (2.7) and estimate Δlij .

2.3.2 Handling Occlusions

The optimization function (2.7) yields the maximum likelihood estimate under the

assumption of additive Gaussian noise to the image observations. However, in the

presence of occlusion, the optimization function can be used only if we can work
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with the unoccluded pixels, which will have to be estimated a priori. A simple way

to do this is to set a threshold and discard those pixels that have an intensity change

(with respect to the previous frame) greater than the threshold. However, a sim-

ple threshold strategy may eliminate the pixels that are not occluded, but whose

intensity changes because of the change in illumination conditions. Therefore, we

propose the following modification to our algorithm to handle occlusion.

Assume that we are able to obtain the tracking and illumination estimates upto

some instance t. Then, we can calculate the bilinear basis images at the current

pose, and project the frame at the next time instance, t + 1, onto the linear subspace

of the basis images. This gives an estimate of the illumination coefficients for the

frame. Using the basis images, we can synthesize the image with the newly esti-

mated illumination coefficients lt+1. In order to do this, the motion between It+1

and It is assumed to be the same as between It and It−1 (i.e., uniform motion). If

the difference between the synthesized image and the observed one is larger than

some threshold for some pixels, we will discard these pixels. By doing this, we

store a mask for the pixels which are occluded. Note that the synthesized image

has the new illumination condition, and thus is not affected by the problem noted

above. Using the unoccluded pixels and the algorithm described in Sect. 2.3.1, we

re-estimate the 3D motion as well as the new illumination coefficients l̂t+1. For the

image at time instance t + 2, we will use the mask at time instance t + 1 to estimate

the illumination condition l̂t+2, then repeat what we have done for t + 1 frame and

update the mask. This method works provided the occlusion happens slowly(most

practical cases). For sudden occlusion, a RANSAC approach [32], that works with

random subsets of feature points, will be adopted.

2.4 Face Recognition From Video

The generative framework for integrating illumination and motion models described

in Sect. 13.1 and the method for learning the model parameters as described in

Sect. 2.3 set the stage for developing a novel face recognition algorithm that is par-

ticularly suited to handling video sequences. The method is able to handle arbitrary

pose and illumination variations and can integrate information over an entire video

sequence.

In our method, the gallery is represented by a 3D model of the face. The model

can be built from a single image [47], a video sequence [48] or obtained directly

from 3D sensors [22]. In our experiments, the face model will be estimated from

video. Given a probe sequence, we will estimate the motion and illumination con-

ditions using the algorithms described in Sect. 2.3. Note that the tracking does not

require a person-specific 3D model – a generic face model is usually sufficient.

Given the motion and illumination estimates, we will then render images from the

3D models in the gallery. The rendered images can then be compared with the im-

ages in the probe sequence. Given the rendered images from the 3D models in the

gallery and the probe images, we will design robust metrics for comparing these two

sequences. A feature of these metrics will be their ability to integrate the identity
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over all the frames, ignoring some frames that may have the wrong identity. Since

3D shape modeling is done for the gallery sequences only, we avoid the issues of

high computational complexity of 3D modeling algorithms in real time.

One of the challenges faced is to design suitable metrics capable of comparing

two video sequences. This metric should be general enough to be applicable to most

videos and robust to outliers. Let P (fi), i = 1, . . . , N be N frames from the probe

sequence. Let SGj(fi), i = 1, . . . , N be the frames of the synthesized sequence

for galley j, where j = 1, . . . , M and M is the total number of individuals in the

gallery. Note that the number of frames in the two sequences to be compared will

always be the same in our method. By design, each corresponding frame in the two

sequences will be under the same pose and illumination conditions, dictated by the

accuracy of the estimates of these parameters from the probes and the synthesis

algorithm. Let dij be the distance between the ith frames of P and Gj . We now

compare two distance measures that can be used for obtaining the identity of the

probe sequence.

1. ID = arg minj mini dij

2. ID = arg minj maxi dij (2.12)

The first alternative computes the distance between the frames in the probe and each

synthesized sequence that are the most similar and chooses the identity as the indi-

vidual with the smallest distance in the gallery. This can be looked upon as obtaining

the identity of the probe from one image of it that is most similar to the gallery. The

second distance measure can be interpreted as minimizing the maximum separation

between the probe and synthesized gallery images. Both of these measures suffer

from a lack of robustness, which can be critical for their performance since the cor-

rectness of the synthesized images depend upon the accuracy of the illumination

and motion parameter estimates. For this purpose, we replace the max by the f th

percentile and the min (in the inner distance computation of 1 in (2.12)) by the

(1 − f)th percentile. In our experiments, we choose f to be 0.8 and use the first

option.

A third possible option is to assign a weight to each image of each synthesized

gallery that is inversely proportional to its distance from the corresponding probe

image, sum all the weights and choose the gallery with largest weight as the identity.

The problem with this method is that the recognition accuracy depends upon the

choice of the weighting function, which in turn can vary with the probe and gallery

sequences.

One point that still needs to be addressed is on how do we compute dij . Recall

that a generic face model is used to track the face in the probe video and the

estimated illumination and motion parameters are used to synthesize the videos for

each person in the gallery using their 3D model. This sets up a mapping between

the pixels in the synthesized images with the probe images through the 3D models.

Also, the number of synthesized images is the same as the number of images in the

probe, thus obviating any synchronization issues. Thus dij can be computed directly

as the squared difference between the synthesized and probe image frames.
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We now describe formally the video-based face recognition algorithm. Using

the above notation, let P (fi), i = 1, . . . , N be N frames from the probe sequence.

Let G1, . . . , GM be the 3D models for each of M galleries.

– Step 1. Register a 3D generic face model to the first frame of the probe

sequence. Estimate the illumination and motion model parameters for each

frame of the probe sequence using the method described in Sect. 2.3.

– Step 2. Using the estimated illumination and motion parameters, synthesize, for

each gallery, a video sequence using the generative model of (2.4). Denote these

as SGj(fi), i = 1, . . . , N and j = 1, . . . , M .

– Step 3. Compute dij in (2.12).

– Step 4. Obtain the identity using a suitable distance measure from (2.12), modi-

fying it for robustness as necessary (see discussion above).

2.5 Experimental Results

Since the tracking and synthesis algorithms are the foundation for the recognition

strategy, we first present results on these two aspects highlighting the accuracy of

the methods in a controlled environment. We then describe our face video database

and the results of the recognition algorithms.

2.5.1 Tracking and Synthesis Results

We synthesized a video sequence of a face with known motion and lighting. A

generic 3D model was registered to the first frame of the sequence manually and

tracked using the algorithm described in Sect. 2.3. Figures 2.2–2.4 show the results

of our tracking algorithm on this sequence. The images in Fig. 2.2 are synthesized

from a 3D model, and thus the motion and illumination are known. The face is

rotating along y-axis from −30◦ to +30◦, and the illumination is changing such

that the light always comes from the front of the face. The resolution of the image is

Fig. 2.2. The back projection of the mesh vertices of the 3D face model using the estimated

3D motion onto some input frames. Face is rotating about the y-axis, and illumination is

changing in the same way as pose
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Fig. 2.4. (a), (b), and (c) are the estimates of the third, fifth, and eight illumination coeffi-

cients, respectively. The solid line shows the true illumination coefficients using the LRLS

method, and the dotted line shows the estimated illumination coefficients

240 by 320. Figures 2.3 and 2.4 show plots of the estimated motion and illumination

against the true values.

We also show results of the synthesis algorithm on a real-life video sequence.

Frames from a synthesized video sequence using learned motion and illumination

parameters are shown in Fig. 2.5. Motion and illumination are learned from the

frames in the first and second row, respectively, and images in the third row are

synthesized with the motion and illumination parameters learned from the corre-

sponding frames in the same column. The reader can visually compare the synthe-

sized images for accuracy of pose and illumination estimates.
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Motion Sequences

Illumination Sequences

Synthesis Sequences

Fig. 2.5. An example of video synthesis with learned motion and illumination models. Motion

and illumination are learned from the frames in the first and second row, respectively, and

images in the third row are synthesized with the motion and illumination parameters learned

from the corresponding frames in the same column

2.5.2 Face Recognition Results

Face Database

Our database consists of videos of 32 people. Each person was asked to move his/her

head as they wished and the illumination was changed randomly. The illumination

consisted of ceiling lights, lights from the back of the head and sunlight from a win-

dow on the left side of the face. Random combinations of these were turned on and

off and the window was controlled using dark blinds. An example of some of the

images in the video database is shown in Fig. 2.6. The resolution of the face varied

depending on the person and the movement. A statistical analysis showed that the

average size was about 70 × 70, with the minimum size being 50 × 50. Each se-

quence was divided into two parts – gallery and probe. The frames in Fig. 2.6 are

arranged in the same order as in the original video, with the first column representing

a frame from the gallery, the third column representing the image in Experiment 1

(see below), and the fifth column representing the image in Experiment 3 (see

below).

A 3D model of each face was constructed from the gallery sequence. In the set

of experiments shown, a generic model was registered to one approximately frontal

image in the gallery manually by choosing seven points on the face. Thereafter the

texture of the face was mapped onto the model. The shape was not changed from the

generic model. We would like to emphasize that any other 3D modeling algorithm

would also have worked and we plan to integrate our previous work in [49] with this

system.

From the portion of each sequence designated as probe, we designed five experi-

ments by choosing different parts of it, as described below:
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Fig. 2.6. Sample frames from the video sequences collected for our database

– Experiment 1: A single image, some examples of which are shown in the third

column of Fig. 2.6, was used as the probe.

– Experiment 2: A video sequence starting with the frame in Experiment 1 was

used as the probe. Examples of these frames can be seen from the third column

and beyond in Fig. 2.6.

– Experiment 3: A single image, some examples of which are shown in the fifth

column of Fig. 2.6, was used as the probe.

– Experiment 4: A video sequence starting with the frame in Experiment 3 was

used as the probe. Examples of which can be seen from the third column and

beyond in Fig. 2.6.

– Experiment 5: A video sequence that has a portion with frontal face and

illumination similar to the gallery was used as the probe. This is achieved by

considering the probe sequence to start immediately after the gallery sequence

ends in our collected data.

As can be seen from Fig. 2.6, the pose and illumination varies randomly in

the video. The reason for choosing the experiments in this way are the following

(1) to study the advantage video provides over image-based recognition, (2) how

sensitive recognition rates are with respect to the actual frames in the video (hence

the change in the starting frame in Experiment 4 compared to Experiment 2), and

(3) how recognition rates are affected if there is a small portion of the video in the

probe very similar to the gallery, even though the other frames may not be.

The results on tracking and synthesis on three of the probes are shown in Fig. 2.7.

We plot the cumulative match characteristic (CMC) [1, 2] for all the experiments
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Fig. 2.7. Tracking and synthesis results are shown in alternating rows for three of the probes

in Fig. 2.8. The following are the main conclusions that we can draw from our exp-

eriments:

– Our proposed algorithm gives relatively high performance (about 90% on the

average for Experiments 1, 3, and 5 that deal with video sequences) on videos

with large and arbitrary variations of pose and illumination.

– There is a significant change increase in performance in considering a video

sequence compared to a single image, as evidenced by the improvements

between Experiments 1 and 2, and between Experiments 3 and 4. Between

Experiments 1 and 2 there is a 10% increase in the Rank 1 identification rate, as

well as a significant increase in the slope of the CMC curve. Between Experi-

ments 3 and 4, there is again a 10% increase in the identification rate. However,

the recognition rates between Experiments 2 and 4 are different, demonstrating
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Fig. 2.8. CMC curve for video-based face recognition experiments

the sensitivity of the algorithm to the actual frames in the sequence (which is to

be expected).

– When a part of the video sequence has overlap with the gallery (even one

frame), our system gives a 100% recognition rate (Experiment 5).

All these experiments demonstrate the effectiveness of video-based face recognition

methods over still image-based approaches. However, the recognition rate is affected

significantly by the actual conditions under which the video was captured.

2.6 Conclusions

In this chapter, we have proposed a method for video-based face recognition that

relies upon a novel theoretical framework for integrating illumination and motion

models for describing the appearance of a video sequence. We started with a brief

exposition of this theoretical result, followed by methods for learning the model

parameters. Then, we described our recognition algorithm that relies on synthesis

of video sequences under the conditions of the probe. Finally, we demonstrated the

effectiveness of the method on video databases with large and arbitrary variations in

pose and illumination. In future, we will work on improving the tracking and synthe-

sis algorithms (which we believe will improve recognition performance), perform-

ing thorough experimentation to understand the effect of the different variabilities,

and analyzing performance on larger datasets.
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3.1 Introduction

Perceiving human faces and modeling the distinctive features of human faces that

contribute most toward face recognition, are some of the challenges faced by com-

puter vision and psychophysics researchers. Human faces comprise a special class of

3D objects, modeling of which involves developing accurate characterizations that

account for illumination variations, head pose variations, facial expressions, etc.

Moreover, human faces also undergo growth related changes that are manifested

in the form of shape variations and textural variations. Hence, the robustness of a

face recognition system to variations due to illumination, pose, facial expressions,

aging, etc., forms a significant evaluation criterion for the system. In this chapter,

we discuss methods to characterize facial variations due to aging effects and propose

methods to verify face images across age progression.

Facial aging effects are manifested in different forms in different age groups.

While aging effects are often manifested in the form of shape variations from

infancy to teenage years (due to craniofacial growth) [50], they are observed in the

form of textural variations such as facial wrinkles and other skin artifacts, during

adulthood. Apart from biological factors, factors such as climatic conditions, ethni-

city, mental stress, etc., are often attributed to play a role in the process of aging.

Some of the interesting applications of studying age progression in human faces are:

– Face recognition/face verification across age

– Automatic age progression systems

– Age-based human–computer interaction systems

– Automatic age identification systems

Next, we provide a brief overview on some of the previous works on age

progression in human faces.

3.1.1 Previous work on Age Progression

D’arcy Thompson’s study of morphogenesis [51] largely laid the foundations for

studies related to the perception of growing faces. Thompson pioneered the use

of geometric transformations in the study of morphogenesis. Biological forms

were embedded within coordinate systems and different morphogenetic events
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were described by means of global geometric transformations within the coor-

dinate system. All through his study, he maintained that morphological changes

were a result of the physical forces such as biomechanical stress and gravity that

act on biological forms. From the perspective of modeling craniofacial growth,

Thompson’s approach translates into identifying those physical forces that are res-

ponsible for the remodeling of the human head with growth.

Pittenger and Shaw [52] studied facial growth as a visco-elastic event defined on

the craniofacial complex. They applied strain and shear transformations on face pro-

files and studied the relative significance of each of the applied transformations, in

accounting for facial growth. They observed that, shape changes in facial profiles in-

duced by cardioidal strain transformations formed the primary source of perceptual

information for relative age judgements. Interestingly, when cardioidal strain trans-

formations were applied on inanimate objects, inanimate objects were perceived

to undergo growth related transformations. Pittenger and Shaw [53] observed this

behavior on cartoon drawings of dogs, monkeys, Volkswagen “beetles,” etc. Mark

et al. [54] identified geometric invariants associated with growth related transforma-

tions and proposed that only transformations that preserve such geometric invariants

in human faces would be perceived as growth-related transformations. The geomet-

ric invariants were described as follows (1) angular coordinates of every point on an

object in a polar coordinate system, being preserved (2) bilateral symmetry about

the vertical axis being maintained, and (3) continuity of object contours being pre-

served. Table 3.1 illustrates some of the transformation functions that were proposed

to model craniofacial growth [54,55] and further illustrates the geometric invariants

that are preserved under each of the transformations. Figure 3.1 illustrates the ef-

fect of different geometric transformations on a human face profile. The “revised”

cardioidal strain transformation model proposed by Todd et al. [56], the model that

draws analogy between the remodeling of the human head with growth and the

remodeling of a fluid-filled spherical object with pressure, was considered very ef-

fective in modeling craniofacial growth.

Table 3.1. Some geometric tranformations that were proposed to model craniofacial growth.

(The geometric invariants designated as I, II, and III are explained Sect. 1.1)

applied transformation model geometric invariants

(I) (II) (III)

cardioidal strain θt+1 = θt � � �
(polar coordinates) Rt+1 = Rt(1 − k cos(θt))

spiral strain θt+1 = θt � � �
(polar coordinates) Rt+1 = Rt(1 + k|θt|)
affine shear Yt+1 = Yt × � �
(cartesiancoordinates) Xt+1 = Xt + kYt

revised cardioidal strain θt+1 = θt � � �
(polar coordinates) Rt+1 = Rt(1 + k(1 − cos(θt)))
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Fig. 3.1. Different transformation models proposed to model facial growth
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Table 3.2. Age progression: computer vision approaches

reference operation approach: overview

Kwon and age-based classification study face anthropometric ratios
da Lobo [57, 58] of face images and propose facial wrinkle

(age group: all ages) analysis methods

Tidderman et al. [59] automatic age progression; create composite faces for
Burt and Perrett [60] age perception different age groups and employ

(age group: 20–60 years) wavelet-based approaches

Lanitis et al. [61] automatic age progression; build a shape-intensity model
face recognition across age for faces and propose PCA based
(age group: 0–30 years) age transformation function

Lanitis et al. [62] age-based classification compare performance of neural
of face images network-based classifiers and
(age group: 0–30 years) hierarchical classifiers

Gandhi et al. [63] automatic age progression; propose SVM-based approach
age estimation for age estimation and modify
(age group: 15 years +) IBST approach for age progression

Ramanathan face verification and propose a Bayesian age difference
and Chellappa [64] facial similarity across age classifier built on probabilistic
and [65] (age group: 20–70 years) eigenspaces framework

Ramanathan automatic age progression; propose a craniofacial growth
and Chellappa [66] face recognition across age model incorporating age-based

(age group: 0–18 years) face anthropometric data

In the computer vision literature, age progression in human faces has been ad-

dressed from two perspectives: one towards automatic age estimation and age-based

classification from face images and the other towards automatic age progression sys-

tems. Table 3.2 summarizes some of the recent computer vision approaches towards

studying age progression in human faces.

3.1.2 Problem Statement

While face images have traditionally been used in identification documents such

as passports, driver’s licenses, voter ID, etc., in recent years, face images are be-

ing increasingly used as additional means of authentication in applications such as

credit/debit cards and in places of high security. Since faces undergo gradual vari-

ations due to aging, periodically updating face databases with more recent images

of subjects might be mandatory for the success of face recognition systems. Since

periodically updating such large databases would be a tedious task, a better alterna-

tive would be to develop face recognition systems that verify the identity of indi-

viduals from a pair of age separated face images. Further, understanding the role of

age progression in affecting the similarity between two face images of an individual

would be important for such a task.
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Table 3.3. Database of passport images

age difference (years) no. of image pairs

1–2 165

3–4 104

5–7 81

8–9 115

6 years 5 years10 years 1 years

4 years 2 years 4 years 1 years

Fig. 3.2. A few sample age separated images of individuals retrieved from their passports

We wish to address the following problems: how similar are a pair of age sepa-

rated face images of an individual? How do inherent changes in a human face due

to aging effects affect facial similarity? Given a pair of age separated face images

of an individual, what is the confidence measure associated with verifying the iden-

tity? Our database is comprised of pairs (younger and most recent) of face images

retrieved from the passports of 465 individuals. Table 3.3 summarizes the database.

The age span of individuals in this database was 20–70 years. Figure 3.2 shows a

few sample images from our database.

3.2 Age Difference Classifier

We propose a Bayesian age-difference classifier built on a probabilistic eigenspaces

framework, to verify the identity of individuals from pairs of age separated face im-

ages. Further, the classifier is also designed to estimate the age-difference between

intrapersonal face images (face images of the same individual) that are age sepa-

rated. Since our database is comprised of adult face images, the textural variations

(wrinkles and other skin artifacts) commonly observed due to age progression, form

the primary basis for classification. Across each pair of face images, we compute

the difference image by subtracting the more recent image from the older image.

The difference image, when computed between age separated images of the same

individual (intrapersonal images), captures facial variations due to aging effects. In-

tuitively, the difference images obtained from the intrapersonal image pairs (image



32 N. Ramanathan and R. Chellappa

1-2 years 3-4 years 5-7 years 8-9 years extra-personal

Fig. 3.3. Average difference images from the intrapersonal (under each of the four age-

difference categories) and extrapersonal classes

pairs of the same individual) with lesser age separation would be less exaggerated

than that obtained from the intrapersonal image pairs with larger age separation.

Further, the extrapersonal difference images would differ significantly from the in-

trapersonal difference images, due to the large mismatch in facial features that is

observed between extrapersonal image pairs. Figure 3.3 illustrates the average dif-

ference images computed from the intrapersonal image pairs (with an age separation

of 1–2 years, 3–4 years, 5–7 years, and 8–9 years) and that computed from the ex-

trapersonal image pairs. The sagging of facial features getting more prominent with

an increase in the age separation between the intrapersonal image pairs is evident

from Fig. 3.3.

3.2.1 Bayesian Framework

The framework proposed in [67] was adopted primarily to estimate complex density

functions in high-dimensional image spaces and subsequently to compute class con-

ditional density functions. The classification of pairs of face images based on their

age-differences, consists of two stages. In the first stage of classification, the identity

between the pair of face images is established. In the second stage, the pairs of age

separated face images that were identified as ones belonging to the same individual,

are further classified based on their age-differences.

Let ΩI denote the intrapersonal space and let ΩE denote the extrapersonal

space. Let I11, I12, I21, I22, . . . , IM1, IM2 be the set of N x 1 vectors formed by

the lexicographic ordering of pixels in each of the M pairs of faces images of M
individuals, respectively. The intrapersonal image differences {xi}M

i=1 are obtained

by computing the differences between pairs of age separated face images of indi-

viduals.

xi = Ii1 − Ii2, 1 ≤ i ≤ M (3.1)

The extrapersonal image differences {zi}M
i=1 are obtained by computing the differ-

ence between face images of different individuals.

zi = Ii1 − Ij2 , j �= i, 1 ≤ i, j ≤ M (3.2)

Firstly, from a set of intrapersonal image differences {xi}M
i=1 ∈ ΩI we esti-

mate the likelihood function for the data P (xi|ΩI). We assume the intrapersonal
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difference images to be Gaussian distributed. Upon performing a Karhunen–Loeve

transform [68] on the training data we obtain the basis vectors {Φi}N
i=1 that span the

intrapersonal space. But due to the high dimensionality of data such a computation

is infeasible. We perform PCA [69], and extract the k basis vectors {Φi}k
i=1 that

capture 99% variance in the data. The space spanned by {Φi}k
i=1 corresponds to the

principal subspace or the feature space F . The remaining basis vectors {Φi}N
i=k+1

span the orthogonal complement space or the error space F̄ . The likelihood function

P (xi|ΩI) is estimated as

P (x |ΩI) =
exp(− 1

2 (x − x̄)T
Σ−1(x − x̄))
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= PF (x |ΩI) . P̂F̄ (x |ΩI) (3.3)

where yi = ΦT
i (x − x̄), are the principal component feature vectors, λi are the

eigenvalues. The marginal density in the orthogonal complement space P̂F̄ (x |ΩI)
is estimated using the error in PCA reconstruction ε2(x) = ‖x̃2‖ −∑k

i=1 y2
i and

the estimated variance along each dimension in the orthogonal subspace, ρ =
1

N−k

∑N
i=k+1 λi. The sum

∑N
i=k+1 λi is estimated by fitting a cubic spline function

on the computed eigenvalues {λi}k
i=1 and subsequently extrapolating the function.

Next, from a set of extrapersonal image differences {zi}M
i=1 ∈ ΩE , we esti-

mate the likelihood function for the data P (zi |ΩE). Adopting a similar approach as

earlier, the extrapersonal space is decomposed into two complementary spaces: the

feature space and the error space. Since the assumption of Gaussian distribution of

extrapersonal image differences may not hold, we adopt a parametric mixture model

(mixture of Gaussian) to estimate the marginal density in the feature space and fol-

low a similar approach as earlier to estimate the marginal density in the orthogonal

complement space. We estimate the likelihood for the data as

P̂ (z |ΩE) = P (y |Θ∗) . P̂F̄ (z |ΩE)

where

P (y |Θ) =
Nc∑
i=1

wiN(y;μi, Σi) (3.4)

Θ∗ = argmax

[ M∏
i=1

P (yi |Θ)
]

(3.5)
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N(y;μi, Σi) is Gaussian with parameters (μi,Σi) and wi correspond to the mix-

ing parameters such that
∑Nc

i=1 wi = 1. We solve the estimation problem using the

expectation-maximization algorithm [70]. Nc, the number of components that com-

prise the gaussian mixture model, was selected based on the distribution of the top

three principal components in the feature space.

During the first stage of classification given a pair of age separated face images,

we compute the difference image x = I1−I2. The a posteriori probability P (ΩI | x)
is computed using the Bayes rule.

P (ΩI | x) =
P (x |ΩI)P (ΩI)

P (x |ΩI)P (ΩI) + P (x |ΩE)P (ΩE)
(3.6)

The classification of the image difference as intrapersonal or extrapersonal is based

on a maximum a posteriori (MAP) rule. For operational conditions, P (ΩI) and

P (ΩE) are set equal and the difference image x is classified as intrapersonal if

P (ΩI | x) > 1
2 .

The second stage of classification deals with classifying the image pairs that

were identified as intrapersonal, further based on their age-differences. We build the

following age-difference based intrapersonal spaces Ω1, Ω2, Ω3, Ω4 for the age-

difference categories 1–2 years, 3–4 years, 5–7 years, and 8–9 years, respectively.

Next, from a set of age-difference based intrapersonal difference images we estimate

the likelihood function P (x |Ωj), j ∈ 1,2,3,4 for each of the four age-difference

categories. Given a difference image x that has been classified as intrapersonal, we

compute the a posteriori probability P (Ωi | x) with i = 1, 2, 3, 4 as:

P (Ωi | x) =
P (x |Ωi)P (Ωi)∑4

j=1 P (x |Ωj)P (Ωj)
(3.7)

Thus if P (Ωi | x) > P (Ωj | x) for all j �= i , i, j = 1, 2, 3, 4, then Ωi is

identified to be the class to which the difference image x belongs. Figure 3.4 gives

a complete overview of the age-difference classifier.

Image1 x

No

Compute P(Ωi|x)
i = 1,2,3,4

j = arg maxi P(Ωi|x)

intra - personal
image pairs ∈

j th age difference
category

extra – personal
image pairs

Yes
Is

P(ΩI|x) >
P(ΩE|x)

Image2

+
+

−

Fig. 3.4. An Overview of the Bayesian age-difference classifier
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3.2.2 Experiments and Results

Using the above formulation, we performed classification experiments on the pass-

port database. We selected pairs of face images of 200 individuals from our data-

base. Using their intrapersonal image differences, we created the intrapersonal space

Ω. Computing the extra personal difference images (by randomly selecting two im-

ages of different individuals from the 200 pairs of images) we created the extra-

personal space Ψ . We created two sets of image differences: set I is comprised of

intrapersonal difference images computed from the face images of 465 image pairs

and Set II is comprised of 465 extrapersonal difference images computed by a ran-

dom selection of face images of different individuals. The image pairs from Set I

and Set II were classified as either intrapersonal or extrapersonal.

During the second stage of classification, 50 pairs of face images from each of

the following age-difference categories 1–2 years, 3–4 years, 5–7 years, and 8–9

years were randomly selected and their corresponding difference image subspaces

namely Ω1, Ω2, Ω3, Ω4 were created. The image pairs from Set I that were classi-

fied as intrapersonal, were further classified into one of the four age-difference cate-

gories using the formulation discussed previously. The classification experiment was

repeated many times using different sets of images from each age-difference cate-

gory to create the intrapersonal spaces. The classification results are reported in Ta-

ble 3.4 in the form of percentage of images under each category that were classified

into one of the four classes. The mean and the standard deviations of the classifica-

tion results generated from the many iterations are reported in Table 3.4. The bold

entries in the table correspond to the percentage of image pairs that were correctly

classified to their age-difference category. The entries within parenthesis denote the

standard deviations.

The classification results are as follows :

– At the operating point, 99 % of the difference images from Set I were correctly

classified as intrapersonal. 83 % of the difference images from Set II were cor-

rectly classified as extrapersonal. It was observed that the image pairs from Set I

that were misclassified as extrapersonal differed from each other significantly

either in facial hair or glasses. Moreover, the average age-difference of intrap-

ersonal images that were misclassified was 7.4 years. The ROC plot in Fig. 3.5

was generated by varying the thresholds adopted for classification. The equal

error rate was 8.5%.

Table 3.4. The overall results of the Bayesian age-difference classifier

type class 1–2 years 3–4 years 5–7 years 8–9 years

Ω1 41.0 (1.1) 12.0 (6.9) 9.0 (5.0) 38.0 (7.2)

original set Ω2 8.0 (5.0) 46.0 (5.6) 8.0 (4.9) 37.0 (9.2)

of images Ω3 10.0 (3.3) 8.0 (6.3) 53.0 (4.4) 28.0 (6.9)

Ω4 10.0 (2.3) 12.0 (7.3) 5.0 (5.4) 73.0 (8.2)
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Fig. 3.5. Face verification results: ROC curve

– When the image pairs from Set I that were correctly classified as intrapersonal

were classified further based on age-differences, it was observed that image

pairs with little variations due to factors such as facial expressions, glasses and

facial hair were more often classified correctly to their respective age-difference

category.

– Image pairs, that belong to the age-difference categories 1–2 years or 3–4 years

or 5–7 years, with significant differences in facial hair or expressions or glasses,

were misclassified under the category 8–9 years. Since Ω4 was built using im-

ages from the age-difference category 8–9 years, it spans more intra pair varia-

tions than that compared with the other three age-difference categories and

hence the above trend is observed.

The eigenspace decomposition which forms an inherent part of the density esti-

mation process reduces computational complexities significantly. Further, since the

estimation of the class conditional density functions is an off-line process, the real-

time computations involved in classifying image pairs based on age-differences are

simple.

3.3 Facial Similarity

We designed the following experiment to study how age progression affects the

measure of facial similarity. We created an eigenspace using 200 faces retrieved

from the database of passport images. The 465 pairs of faces were projected onto
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the space of eigenfaces and were represented by the projections along the eigenfaces

that correspond to 95% of the variance. We adopt the similarity measure as proposed

in Sect. 3.2. Since illumination variations and pose variations across each pair of

faces is minimal, the similarity score between each pair would be affected by factors

such as age progression, facial expression variations, and occlusions due to facial

hair and glasses. We divided our database into two sets: the first set is comprised of

those images where each pair of passport images had similar facial expressions and

similar occlusions if any, due to glasses and facial hair. The second set is comprised

of those pairs of passport images where differences due to facial expressions or

occlusions due to glasses and facial hair were significant.

The distribution of similarity scores across the age-difference categories namely

1–2 years, 3–4 years, 5–7 years, and 8–9 years is plotted in Fig. 3.6. The statistical

variations in the similarity scores across each age-difference category and across

each set of passport images are tabulated in Table 3.5.

– From Fig. 3.6 we note that as the age-difference between the pairs of images

increases, the proportion of images with high similarity scores decreases.

– From Table 3.5 we note that as the age-difference increases, across both the

sets of images and across all the variations such as expression, glasses, and
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Fig. 3.6. Facial similarity across time: distribution of similarity scores across age
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Table 3.5. Similarity measure

age-based similarity measure

age-difference (years) first set second set

expression glasses facial hair

μ σ2 μ σ2 μ σ2 μ σ2

1–2 0.85 0.02 0.70 0.021 0.83 0.01 0.67 0.04

3–4 0.77 0.03 0.65 0.07 0.75 0.02 0.63 0.01

5–7 0.70 0.06 0.59 0.01 0.72 0.02 0.59 0.10

8–9 0.60 0.08 0.55 0.10 0.68 0.18 0.55 0.10

facial hair, the mean similarity score drops gradually and the variance of the

similarity scores increases.

– Within each age-difference category, we see a notable drop in similarity scores

when variations due to expressions and facial hair are more pronounced.

3.4 Craniofacial Growth Model

In this section, we propose a craniofacial growth model that characterizes growth

related shape variations commonly observed in children’s faces across years. The

model draws inspiration from the “revised” cardioidal strain transformation model

and further accounts for anthropometric evidences collected on facial growth. Math-

ematically, the “revised” cardioidal strain transformation model is expressed as fol-

lows [56]. Let P denote the pressure at the particular point on the object surface

acting radially outward. Let (R0, θ0) and (R1, θ1) denote the angular co-ordinates

of a point on the surface of the object, before and after the transformation. Let k de-

note a growth related constant. Figure 3.7a illustrates the pressure distribution inside

a fluid-filled spherical object. (A similar illustration appears in [71].)

P ∝ R0(1 − cos(θ0))
R1 = R0 + k(R0 − R0 cos(θ0)) (3.8)

θ1 = θ0

Face anthropometric studies report that different facial regions reach maturation at

different years and hence a few facial features change relatively less when compared

to other facial features, as age increases. In the context of the “revised” cardioidal

strain transformation model, this observation translates into the fact that different

regions of human faces have different growth parameters across age. Hence, it is

important to incorporate anthropometric evidences collected on facial growth while

developing the model, whereby we can reliably estimate the growth parameters

for different regions of the human face across age. Farkas [72] provides a com-

prehensive overview of face anthropometry and its many significant applications.

He defines face anthropometry in terms of measurements taken from 57 landmarks
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Fig. 3.7. (a) Remodeling of a fluid-filled spherical object. (b) Facial growth simulated on the

profile of a child’s face using the “revised” cardioidal strain transformations

on human faces. We use the age-based facial measurements and proportion indices

(ratios of distances between facial landmarks) provided in [72,73] to build the cran-

iofacial growth model. Figure 3.8 illustrates the 24 facial landmarks and some of

the important facial measurements that were used in our study.

3.4.1 Model Computation: An Optimization Problem

The origin of reference for the craniofacial growth model is located between land-

marks “tr” and “n” along the facial midline axis [66]. Let the facial growth para-

meters of the “revised” cardioidal strain transformation model, that correspond to

facial landmarks designated by [n, sn, ls, sto, li, sl, gn, en, ex, ps, pi, zy, al,
ch, go] be [k1, k2, · · · k15], respectively. The facial growth parameters for differ-

ent age transformations can be computed using anthropometric constraints on facial

proportions. The computation of facial growth parameters is formulated as a non-

linear optimization problem. We identified 52 facial proportions that can be reliably

estimated using the photogrammetry of frontal face images. Anthropometric con-

straints based on proportion indices translate into linear and nonlinear constraints

on selected facial growth parameters. While constraints based on proportion indices

such as the intercanthal index, nasal index, etc., result in linear constraints on the

growth parameters, constraints based on proportion indices such as eye fissure index,

orbital width index, etc., result in nonlinear constraints on the growth parameters.

Let the constraints derived using proportion indices be denoted as r1(k) = β1,

r2(k) = β2, · · · , rN (k) = βN . The objective function f(k) that needs to be

minimized w.r.t k is defined as

f(k) =
1
2

N∑
i=1

(ri(k) − βi)2 (3.9)
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Fig. 3.8. Face anthropometry: of the 57 facial landmarks defined in [72], we choose 24 land-

marks illustrated above for our study. We further illustrate some of the key facial measure-

ments that were used to develop the growth model

The following equations illustrate the constraints that were derived using different

facial proportion indices.

r1 :
[ n − gn

zy − zy
= c1

] ≡ α
(1)
1 k1 + α

(1)
2 k7 + α

(1)
3 k12 = β1

r2 :
[ al − al

ch − ch
= c2

] ≡ α
(2)
1 k13 + α

(2)
2 k14 = β2

r3 :
[ li − sl

sto − sl
= c3

] ≡ α
(3)
1 k4 + α

(3)
2 k5 + α

(3)
3 k6 = β3

r4 :
[sto − gn

gn − zy
= c4

] ≡ α
(4)
1 k5 + α

(4)
2 k7 + α

(4)
3 k12 + α

(4)
4 k2

4 + α
(4)
5 k2

7

+α
(4)
6 k2

12 + α
(4)
7 k4 k7 + α

(4)
8 k7 k12 = β4

(αi
j and βi are constants. ci is age-based proportion index obtained from [72].)

We use the Levenberg–Marquardt nonlinear optimization algorithm [74] to com-

pute the growth parameters that minimize the objective function in an iterative fash-

ion. We use the craniofacial growth model defined in (3.8) to compute the initial

estimate of the facial growth parameters. The initial estimates are obtained using
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Fig. 3.9. Age transformation results on different individual (the original images shown above

were taken from the FG-Net database [76])

the age-based facial measurements provided for each facial landmark, individually.

The iterative step involved in the optimization process is defined as

ki+1 = ki − (H + λdiag[H])−1∇f(ki) (3.10)
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where ∇f(ki) =
∑N

i=1 ri(k)∇ri(k) and H corresponds to the Hessian matrix eva-

luated at ki. At the end of each iteration, λ is updated as illustrated in [74]. Next,

using the growth parameters computed over selected facial landmarks, we compute

the growth parameters over the entire face region. This is formulated as a scattered

data interpolation problem [75]. Thus, the growth parameters computed at selected

facial features using face anthropometry are used to compute the growth parameters

over the entire facial region. Upon computing the growth parameters, the proposed

craniofacial growth model can be applied to automatically age the face image. For

an age transformation from “p” years to “q” years (q > p), the model takes the form

similar to the one defined in (3.8). On a polar coordinate framework, the transfor-

mation is defined as

Ri
q = Ri

p(1 + ki
pq(1 − cos(θi

p)))

θi
q = θi

p (3.11)

where i corresponds to the i’th facial feature and kpq, the growth parameters for a

transformation from “p” years to “q” years.

Figure 3.9 shows some of the age transformation results obtained using the pro-

posed model. The growth parameters illustrate the different growth rates that are

observed over different facial regions, across ages. The proposed appearance pre-

diction model serves well the purpose of performing face recognition across age

progression on children’s face images [66] as the model facilitates better facial fea-

ture alignment between age separated face images of children. The model implicitly

accounts for the different growth spurts observed in adolescent boys and girls, as

the model is built using anthropometric data that pertains to the growth observed in

boys and girls, separately. The anthropometric measurements provided in [72] were

retrieved from Caucasian faces and hence the model should perform commendably

well in predicting Caucasian faces across age progression.

3.5 Conclusions

While there have been considerable amounts of research in developing face recog-

nition systems that are robust to variations in face images due to illumination, head

pose orientations, facial expressions, etc., research pertaining to the natural process

of facial aging is still in its nascent stages. Developing automatic age progression

systems for children and adults, would further enhance the performance of face

recognition systems. Developing systems that can automatically detect the age of

individuals from their face images would have a significant impact on face process-

ing applications. In future, we wish to develop automatic age estimation systems

and automatic age progression systems for adult faces.



4 Quality Assessment and Restoration of Face Images
in Long Range/High Zoom Video

Yi Yao, Besma Abidi, and Mongi Abidi

4.1 Introduction

Over the last two decades, substantial developments have been made in face

recognition research. However, most of the efforts are limited to close range

scenarios, which are well suited for applications with controlled distances, such

as identity verification at access points. Little attention is paid to long range face

related research. The rapidly increasing need for long range surveillance and wide

area monitoring calls for a passage in face recognition from close-up distances to

long distances and accordingly from low and constant camera zoom to high and

adjustable zooms. The research work described herewith serves this purpose and

establishes the foundation for long range face related research.

Before continuing our discussion, we first give in Table 4.1 the designation of

different ranges of system magnifications and observation distances for near-ground

surveillance (both indoor and outdoor).

4.1.1 Scope

In this effort, we first describe our long range/high magnification face video

database. Both indoor and outdoor sequences are collected under uncontrolled sur-

veillance conditions. The significance of this database lies in the fact that it is the

first database to provide face images from long distances (indoor: 10–20 m and

outdoor: 50–300 m) and high magnifications (indoor: 10× to 20× and outdoor:

60× to 375×). The database has applications in experimentations with human iden-

tification and authentication in long range surveillance and wide area monitoring.

The database will be made public to the research community for perusal towards

long range face related research.

Our database has the following distinguishing characteristics. (1) Although

many face databases have been collected in the past, such as XM2VTS [77],

BANCA [78], FERET [79], CAS-PEAL [80], and CMU PIE [81], according to

the definitions in Table 4.1, most of the existing face databases fall into the cat-

egory of low magnification with very few achieving medium magnification. The

database collected by the University of Texas at Dallas involves medium distance

sequences [82]. Their parallel walking videos start from a distance of 13.6 m and

their perpendicular walking videos are collected from a distance of 10.4 m. How-

ever, their camera zoom remains low and constant. In comparison, our database
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Table 4.1. Designation of magnification/distance ranges

range low/short medium high/long extreme

magnification (×) 1–3 3–10 10–30 >30
distance (m) < 3 3–10 10–100 >100

aims at high to extreme magnifications and long to extreme distances. For indoor

sequences, high magnifications (10× to 20×) are used while for outdoor sequences

extreme magnifications are obtained with a maximum of 375×. As a result, degrada-

tions induced by high magnification and long distance, such as magnification blur,

are systematically present in the data. (2) Our database closely resembles the real

near-ground surveillance conditions (illumination changes caused by nonuniform

roof light, air turbulence, and subject motion) and, more importantly, includes the

effect of camera zooming, which is commonly ignored by other existing databases.

Furthermore, sequences with various combinations of still/moving subjects and con-

stant/variable camera zoom are collected for the study of individual and combined

effects of target and camera motions.

Apart from illumination, pose, and expression, magnification blur is identified

as an additional major deteriorating source for long range face recognition. To des-

cribe the corresponding degradations, a face image quality measure is developed.

Since imaging conditions, such as image noise level and available incoming lights,

fluctuate considerably with respect to system magnifications and observation dis-

tances, conventional sharpness measures, sensitive to image noise and brightness,

are not useful. Developed from gradient-based sharpness measures, a class of adap-

tive sharpness measures is proposed, where special weight functions are employed

to suppress artificially elevated sharpness values from increased image noise. The

proposed adaptive sharpness measures have been successfully applied to high mag-

nification systems by the authors [83] to quantify magnification blur. In this chapter,

adaptive sharpness measures are used to evaluate face image quality, predict overall

FRR, and determine whether subsequent enhancement is necessary.

To compensate for the decrease in FRR caused by high magnification and

long observation distance, several image enhancement algorithms are implemented

and their performances compared. Wavelet-based approaches, capable of multiscale

processing, are selected. Unsharp masking (UM) and regularized deconvolution are

exploited to enhance facial features from the approximation coefficients transformed

by the Harr wavelet. Both methods prove efficient and result in a substantially

improved FRR.

4.1.2 Related Work

According to the scope of this effort, a brief review of related work in literature

is given in the following two aspects: face image quality measures and face image

deblurring algorithms. In addition, since the proposed face image quality measure
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is developed from gradient-based sharpness measures [83], an overview of existing

gradient-based sharpness measures is also conducted.

Face Quality Measures

Cost functions have been used in literature to describe the probability of an area

being a face image. The term face quality assessment was first explicitly introduced

by Identix [84], where a face image is evaluated according to the confidence of

detectable eyes, frontal face geometry, resolution, illumination, occlusion, contrast,

focus, etc. Kalka et al. applied the quality assessment metrics originally proposed

for iris [85] to face images. Criteria such as lighting (illumination), occlusion, pixel

count between eyes (resolution), and image blurriness caused by both out-of-focus

and motion are considered. Xiong et al. developed a metric based on bilateral sym-

metry, color, resolution, and expected aspect ratio (frontal face geometry) to deter-

mine whether a detected face image in a surveillance video is suitable to be added

to an on-the-fly database [86].

Face Image Deblurring

Apart from numerous image deblurring algorithms, such as adaptive unsharp mask-

ing [87, 88] and regularized image deconvolution [89], algorithms are proposed

especially for face deblurring by making use of known facial structures. Fan et al.

incorporated prior statistical models of the shape and appearance of a face into the

regularized image restoration formulation [90]. A hybrid recognition and restoration

architecture was described by Stainvas and Intrator [91], where a neural network is

trained by both clear and blurred face images. Liao et al. applied Tikhonov regu-

larization to eigenface subspaces to overcome the algorithm’s sensitivity to image

noise [92].

Sharpness Measures

Sharpness measures are traditionally used to evaluate out-of-focus blur and can be

grouped into the following categories [93]: gradient-based, variance-based,

correlation-based [94], histogram-based [95], and frequency domain-based meth-

ods [96–98]. With the development of practical edge detectors, edge-based sharp-

ness measures have attracted increasing attention [99–101]. Meanwhile, sharpness

measures using wavelet transform also came into view [102,103]. A detailed survey

regarding existing sharpness measures along with performance comparisons can be

found in [104]. We will focus on gradient-based methods herewith, from which the

proposed adaptive measures are developed.

Gray level differences among neighboring pixels provide a reasonable represen-

tation of image sharpness. Image gradient obtained by differencing or using high

pass filters are abundant in literature. Different forms of gradients can be used [93]

(1) the absolute gradient defined as
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S =
∑
M

∑
N

|I(x, y + n) − I(x, y)| + |I(x + n, y) − I(x, y)|,

(2) the squared gradient given by

S =
∑
M

∑
N

√
|I(x, y + n) − I(x, y)|2 + |I(x + n, y) − I(x, y)|2,

and (3) the maximum gradient formulated as

S =
∑
M

∑
N

max
{
I(x, y + n) − I(x, y)|, |I(x + n, y) − I(x, y)|},

where I(x, y) represents the image intensity, M /N denotes the total number of im-

age rows/columns, and n is the differencing step. The absolute gradient with n = 1
is also called Sum-Modulus-Difference (SMD) and the case with n = 2 is com-

monly referred to as the Brenner measure [93]. The most well-known measure based

on high pass filters is the Tenengrad measure [95] which is given by:

S =
∑
M

∑
N

[
Ix(x, y)2 + Iy(x, y)2

]
, while

√
Ix(x, y)2 + Iy(x, y)2 ≥ T,

with the horizontal and vertical gradients, Ix(x, y) and Iy(x, y), obtained using the

Sobel filters. The Laplacian filter is another popular choice [95], where the sharpness

is defined as

S =
∑
M

∑
N

|IL(x, y)|, while|IL(x, y)| ≥ T,

with IL(x, y) = I(x, y) ∗ h(x, y) and h(x, y) a Laplacial filter. Choi et al. utilized

a linear combination of multiple median filters, referred to as frequency selective

weighted median (FSWM) filter [105].

4.1.3 Chapter Organization

The remainder of this chapter is organized as follows. Section 4.2 describes our high

magnification face video database. The face quality measure and enhancement algo-

rithms are discussed in Sects. 4.3 and 4.4. The efficiency of the proposed algorithms

is validated via experimental results in Sect. 4.5. Section 4.6 concludes this chapter.

4.2 Database Acquisition

Our database collection, including indoor and outdoor sessions, began in February

2006 and is scheduled to be finished in October 2006. The final deliverable con-

tains frontal view face images collected with various system magnifications (10×
to 375×), different observation distances (10–300 m), indoor (office roof light and
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side light) and outdoor (sunny and partly cloudy) illuminations, still/moving sub-

jects, and constant/varying camera zooms. Small expression and pose variations are

also included in the video sequences of our database, closely resembling the varia-

tions encountered in uncontrolled surveillance applications.

The indoor and outdoor sessions share the same gallery, which is collected by

a Canon A80 camera under controlled indoor environment, as shown in Fig. 4.2a.

The observation distance for the gallery images is 0.5 m. The image resolution is

2, 272×1, 704 pixels and the camera’s focal length 114 mm (magnification: 2.28×).

4.2.1 Indoor Sequence Acquisition

For the indoor sequence collection, the observation distance is varied from 10 to

16 m. Given this distance range and an image resolution of 640×480, a 22× system

magnification is sufficient to yield a face image with 60 pixels between the subject’s

eyes.1 Therefore, a commercially available PTZ camera (Panasonic WV-CS854) is

used. An ImperX VCE-PRO grabber is employed to capture the analog video signals

from the Panasonic camera. A graphical user interface (GUI), shown in Fig. 4.1b, is

developed for real-time video collection and camera control including camera zoom

and focus.

Our indoor database includes both still images (7 images per subject) and video

sequences (6 sequences per subject). Still images are collected at uniformly distrib-

uted distances in the range of 10–16 m with an interval of 1 m approximately. The

corresponding system magnifications vary from 10× to 20× with an increment of

2×, achieving an approximately constant face image size to eliminate the influence

of resolution. A still image is also taken with low magnification (1×) and from

close distance (1 m), as shown in Fig. 4.2b. The performance of face recognition al-

gorithms on the 1× images is used as a reference for higher magnification images.

Still images will be used for the study of degradations from high magnifications.

(a) (b)

Fig. 4.1. The indoor sequence collection system. (a) Panasonic PTZ camera and (b) GUI. The

blue and red rectangles depict the position and image area of the subject’s face and T-zone

(including eyes, nose, and mouth), respectively

1 A minimum distance of 60 pixels between eyes is recommended by FaceIt R© for successful

face recognition.
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The observation distance and system magnification are two major factors, to

which this effort is devoted. Meanwhile, the effect of composite target and cam-

era motions are included to achieve a close resemblance to practical surveillance

scenarios. Therefore, indoor video sequences are recorded under the following

three conditions (1) constant distance and varying system magnification, (2) vary-

ing distance (the subject walks at a normal speed towards the observation camera) &

constant system magnification, and (3) varying distance and varying system magni-

fication. Conditions 1 and 2 concentrate on the individual effect of camera zooming

and subject motion while the combined effect can be observed in condition 3. In

addition, system magnification is varied so that a constant face image size is

obtained in condition 3. These video sequences can be used for studies of resolution,

target motion, and camera zooming.

The above still images and video sequences are collected under fluorescent roof

lights with full intensity (approximately 500 lx) and include a certain degree of

illumination changes caused by the nonuniformly distributed roof lights. Our indoor

database also considers a large amount of illumination changes under high magni-

fication. A halogen side light (approximately 2,500 lx) is added and a sequence is

recorded as the intensity of the roof lights is decreased from 100 to 0%, which cre-

ates a visual effect of a rotating light source. Figure 4.2 illustrates the still images of

one data record in the database and Table 4.2 summarizes the specifications of the

collected video sequences.

(a) Gallery (b) 1× reference (c) 10×, 9.5m (d) 12×, 10.4m

(e) 14×, 11.9m (f) 16×, 13.4m (g) 18×, 14.6m (h) 20×, 15.9m

Fig. 4.2. A set of still images in one data record
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Table 4.2. Indoor video sequence specifications

conditions system distance (m)

magnification (×)

constant distance and varying system mag. 10 → 20 13.4 and 15.9

varying distance and constant system mag. 10 and 15 9.5 → 15.9

varying distance and constant system mag. 10 → 20 9.5 → 15.9

illumination changes 20 15.9

The indoor session has 55 participants (78% male and 22% female). The ethnic

diversity is defined as a collection of 73% Caucasian, 13% Asian, 9% Asian Indian,

and 5% of African Descent.

4.2.2 Outdoor Sequence Acquisition

For the outdoor sequence acquisition, a composite imaging system is built where

a Meade ETX-90 telescope (focal length: 1,250 mm) is coupled with a Canon A80

camera (35 mm equivalent focal length: 38–114 mm) for still image collection and

a Panasonic VDR-M53 camcorder (focal length: 2.1–50.4 mm) for video sequence

collection via various eyepieces following an afocal connection (Fig. 4.3a). In or-

der to achieve the required resolution (60 pixels between the subject’s eyes) at long

to extreme distances (50–300 m), three eyepieces are used: Meade 4.7 mm, Meade

26 mm, and Celestron 40 mm. Accordingly, the achievable system magnification

range is 24× to 800×. Still images and video sequences are collected at uniformly

distributed distances in the range of 50–300 m with an interval of 50 m. The corre-

sponding system magnification varies from 60× to 375× with an increment of 60×
approximately . Our outdoor database is still in the collection phase and is scheduled

to be finished in October 2006.

4.3 Face Image Quality Assessment

Long distance and high magnification introduce severe and nonuniform blur, which

is unique to our database in comparison to most existing databases usually collected

from close distances and with low magnifications. Our first priority is to examine

the effect of high magnification blur on face image quality and the overall FRR.

4.3.1 Face Recognition Rate vs. System Magnification

We employ FaceIt R© [106] as an evaluation tool and focus on the first rank perfor-

mance and the cumulative match characteristic (CMC) measure. The CMC mea-

sure is a quantified measurement of a CMC curve defined as QCMC =
∑K

i=1 Ci/i,
where K is the number of ranks considered and Ci denotes the percentage of probes

correctly recognized at rank i [107]. In the following experiments, K = 10 is used.
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(a) (b)

(c) (d) (e)

Fig. 4.3. The outdoor sequence collection system: (a) composite imaging system and

(b) GUI. (c) Data collection scene. Still images: (d) 250×, 200 m and (e) 375×, 300 m,

severely blurred by high magnification and air turbulences

The relationship between face recognition performance, characterized by CMC,

and system magnification is illustrated in Fig. 4.4 and Table 4.3. It is obvious that

deterioration from limited available fine details causes the FRR to drop gradually

as the system magnification increases. From magnification 10× to 20×, the CMC

measure declines from 74.3 to 58.8%. Although, the face resolution is kept constant,

there exists a significant performance gap between the low (1×) and high (20×)

magnification images, which reveals that magnification blur is an additional major

degrading factor in long distance face recognition. This performance degradation

is to be quantified by a face image quality measure and compensated for by image

postprocessing.

4.3.2 Adaptive Sharpness Measures

Sharpness measures have been traditionally proposed to evaluate out-of-focus blur.

Nevertheless, their extension to quantify magnification blur is nontrivial. Since

image noise level increases with system magnification, conventional sharpness mea-

sures, sensitive to image noise, are not applicable. To avoid artificially elevated

sharpness values due to image noise, adaptive measures are proposed [83]. In

order to differentiate variations caused by actual image edges from those introduced

by image noise and artifacts, adaptive sharpness measures assign different weights
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Fig. 4.4. CMC comparison across system magnifications. The gallery consists of face images

with high resolution and collected from a close distance. The probe images differ only in

system magnification and observation distance

Table 4.3. CMC measure and rank 1 performance comparison across system magnifications

system magnification

(×)

1 10 12 14 16 18 20

CMC measure (%) 74.3 69.7 67.3 67.5 64.9 59.4 58.8

CMC at rank 1 (%) 65.5 61.8 60.0 58.2 56.4 49.1 47.3

to pixel gradients according to their local activities. For pixels in smooth areas, small

weights are used. For pixels adjacent to strong edges, large weights are allocated.

The definition of local activity and the selection of weight functions are two ma-

jor factors in constructing adaptive sharpness measures. According to the descrip-

tion of local activity, sharpness measures can be divided into two groups: separable

and nonseparable. As the name suggests, separable methods consider horizontal

and vertical edges independently, while nonseparable methods include the contribu-

tions from diagonal edges. For separable measures, two signals are constructed, a

horizontal

gx(x, y) = I(x + 1, y) − I(x − 1, y)

and a vertical

gy(x, y) = I(x, y + 1) − I(x, y − 1).

For nonseparable methods, the local activities are given by

g(x, y) = I(x − 1, y) + I(x + 1, y) − I(x, y − 1) − I(x, y + 1).



52 Y. Yao et al.

Different forms of weights can be used, among which polynomial and rational

functions are two popular choices. The polynomial, to be more specific cubic, and

rational functions are also exploited in adaptive unsharp masking [87,88]. The poly-

nomial weights suppress small variations, mostly introduced by image noise, and

have been proved efficient in evaluating the sharpness of high magnification images

[83]. The rational weights emphasize a particular range of image gradients. Apply-

ing the nonseparable g(x, y) for example, the polynomial weights can be written as

ω(x, y) = g(x, y)pω ,

where pω is a power index determining the degree of noise suppression. The rational

weights are given by:

ω(x, y) =
(2k0 + k1)g(x, y)

g2(x, y) + k1g(x, y) + k0
,

where k0 and k1 are coefficients associated with the peak position L0 and width

ΔL of the corresponding function, respectively, and comply with the following

equations:

k0 = L0

k2
1 + 8k0k1 + 12k2

0 − ΔL2 = 0.

Figure 4.5 illustrates the comparison of different forms of weight functions.

The newly developed weights are then applied to gradient-based sharpness mea-

sures to construct the adaptive sharpness measures. Considering the Tenengrad

measure for instance, the resulting separable version is given by:
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Fig. 4.5. Illustration of weight functions in the 1D case. Solid curves: rational functions and

dashed curves: polynomial functions
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S =
∑
M

∑
N

[ωx(x, y)Ix(x, y)2 + ωy(x, y)Iy(x, y)2],

where ωx(x, y)/ωy(x, y) denotes the weights obtained from gx(x, y)/gy(x, y). For

nonseparable methods, the corresponding adaptive Tenengrad is formulated as

S =
∑
M

∑
N

ω(x, y)[Ix(x, y)2 + Iy(x, y)2].

4.3.3 Image Sharpness and System Magnification

To validate the need for adaptive sharpness measures, noise levels of face images at

various magnifications are first studied. The standard deviation of a uniform back-

ground patch closely describes the behavior of image noise and is computed with

respect to system magnification, as shown in Fig. 4.6. Image noise level increases as

system magnification increases. Therefore, to exclude the artificially elevated sharp-

ness values from increased noise levels, adaptive sharpness measures are preferred.

Figure 4.7 shows the computed sharpness values (nonseparable Tenengrad with

polynomial weight of degree 2) for all still face images in our database. The mean

sharpness values give a clearer view of the overall performance with respect to sys-

tem magnification. As expected, image sharpness decreases as system magnification

increases. The decrease in FRR caused by magnification blur is consistent with the

behavior of image sharpness measures. Therefore, we could use sharpness measures

as an indicator not only for the degree of magnification blur but also for achievable

recognition rates.
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Fig. 4.6. Face image noise level. Image gray level: 0–255. Dots represent the noise variances

computed from face images of different subjects and system magnifications
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From the distribution of these sharpness values, especially those of 1× and 10×
images (Fig. 4.7), a threshold (the intersection point) can be derived, Sth = 16, 600,

which separates the tested face images into two groups: one with acceptable sharp-

ness (S ≥ Sth) and the other (S < Sth) severely degraded by magnification blur.

Images in the first group contain sufficient facial features and thus will not dete-

riorate the overall FRR. On the contrary, images in the second group, deficient in

necessary facial features, require image enhancement and/or restoration so that the

overall FRR can be maintained.

The threshold Sth = 16, 600 is obtained empirically and is application de-

pendent. In practice, the sharpness measures of low magnification images, usually

the gallery images, can be computed and their statistics, such as the mean S0 and

the standard deviation σ, can be estimated. The threshold can then be defined as

Sth = S0−σ. The threshold can also be estimated and updated on-the-fly by study-

ing the distributions of face image sharpness at various magnifications.

4.4 Face Image Enhancement

As illustrated in the Sect. 4.3.3, high magnification images suffer from both in-

creased image blur and noise levels. In general, deblurring algorithms are prone

to aggravated image noise, while denoising algorithms usually smooth out image

details. The resulting images are either short of details or overwhelmed by elevated

image noise. Since FaceIt R© is sensitive to both degradations, a good balance needs

to be found for an optimal FRR. Multiscale processing based on wavelet transform

proves to be the most promising candidate.
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For each probe, the face image sharpness is computed and its value is compared

with a predefined threshold Sth. If the current sharpness value is smaller than Sth,

image enhancement is performed. Otherwise, no postprocessing is conducted. In

so doing, only those images which may deteriorate the overall FRR are processed.

Images with acceptable sharpness are fed to the face recognition engine directly

to prevent a possible increase in image noise from unnecessary enhancement. The

importance of choosing an efficient measure of face image quality becomes evi-

dent. Another advantage of using a face quality measure is attributed to the reduced

computational complexity, which is also crucial to real-time applications. The block

diagram of the proposed algorithm is depicted in Fig. 4.8.

The proposed algorithm proceeds as follows. (1) Compute the sharpness mea-

sure of the input face image: S. (2) If S < Sth, go to step (3). Otherwise, go to

step (1) and wait for the next probe. (3) Decompose the face image via the Harr

wavelet transform of level 1. (4) Apply deblurring algorithms to the approximation

image and denoising algorithms to the vertical/horizontal/diagonal detail images.

(5) Apply adaptive grey level contrast stretching. (6) Reconstruct the output image

via the Harr wavelet transform.

A straightforward thresholding is applied for denoising all detail images. Two

types of deblurring algorithms, UM, and regularized deconvolution, are imple-

mented to enhance the approximation image. The UM method follows its traditional

implementation and a Laplacian filter is used. Our regularized deconvolution utilizes

the Lasso regularization [108].
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Fig. 4.8. Block diagram of high magnification image enhancement
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A typical regularized deconvolution solves the following minimization problem:

fλ = argmin
{||Af − fb||2L2

+ λ||Lf ||2L2

}
,

where f and fb are the original and blurred images in vector format, A and L rep-

resent the blurring filter and a predefined mask in vector format, and λ denotes

the regularization parameter. Various forms of L can be found in literature, among

which the identity matrix and Laplacian filter are two popular choices [109, 110].

The Tikhonov regularization uses norm-2 definition and does not allow disconti-

nuities in the solution, leading to overall smoothed edges in the restored images.

The total variation (TV) regularization is proposed to preserve edges in the recon-

structed images [111], where a L1 definition is adopted. The corresponding regular-

ization term is ||
√

f2
x + f2

y ||L1 , where fx and fy denote the vertical and horizontal

image gradients in vector format. The TV regularization is capable of preserving

edges but suffers from significantly increased computational complexity. In our

implementation, we utilize the Lasso regularization and design the regularization

term as ||f ||L1 [108]. The Lasso regularization achieves similar edge preservation

as the TV regularization with substantially reduced computations.

4.5 Result Validation

For the purpose of performance comparison, we chose adaptive UM and Lucy–

Richardson deconvolution (LRD) from general deblurring methods. Also imple-

mented is the algorithm proposed by Liao and Lin [92] for face deblurring. Fan’s

algorithm [90] is not selected due to the difficulties in establishing an accurate face

statistical model based on the limited number of available samples in our data-

base. The hybrid recognition and restoration structure [91] is not feasible since

our approach regards recognition and restoration as two separate stages. The face

recognition is conducted using an existing commercial tool, FaceIt R©, keeping our

focus on restoration only. Experiments are conducted for images at all magnifi-

cations and similar observations are obtained. In the interest of space, only the

comparisons at 20× (Fig. 4.9 and Table 4.4) and 10× (Fig. 4.10 and Table 4.5 ) are

demonstrated. Note that since the major concern of our work is the ability of the

tested enhancement algorithms to compensate for degradations caused by high sys-

tem magnifications, the performances of these various enhancement algorithms are

compared with the performance of the original reference images at 1×.

Wavelet-based methods are able to achieve the most improvement with a rela-

tive increase of 25 and 26% in CMC measure for the UM and Lasso regularized

deconvolution approaches, respectively, yielding a performance comparable to the

1× reference. With proper postprocessing, the degradation in FRR caused by magni-

fication blur can be successfully compensated for. Wavelet-based methods, capable

of multiscale processing, can reduce image noise and enhance image details simul-

taneously, thus resulting in better FRR performances. Compared with the UM-based
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Fig. 4.9. (a) 20× original image. (b) Enhanced by UM. (c) Enhanced by wavelet transform

with the approximation image processed by UM. (d) Enhanced by wavelet transform with the

approximation image processed by Lasso regularized deconvolution. (e) 1× reference image.

(f) CMC comparison across enhancement algorithms. The performances of the algorithms

with and without SMS (skipped for clear presentation) are identical
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Table 4.4. CMC measure and rank 1 performance comparison across enhancement

algorithms for 20× images

image (×) CMC measure (%) CMC at rank 1 (%)

20× original 58.8 47.3

Eigenface [92] 59.7 48.2

UM 64.3 50.9

LRD 65.3 56.4

wavelet + LRD 66.0 56.4

wavelet + UM 73.6 65.5

wavelet + UM SMS 73.6 65.5

wavelet + Lasso 74.0 63.6

wavelet + Lasso SMS 74.0 63.6

1× reference 74.3 65.5

Table 4.5. CMC measure and rank 1 performance comparison across enhancement

algorithms for 10× images

image (×) CMC measure (%) CMC at rank 1 (%)

10× original 69.9 61.8

UM 65.8 54.5

LRD 66.1 54.5

wavelet + LRD 65.6 52.7

wavelet + UM 75.7 65.5

wavelet + UM SMS 73.6 63.6

wavelet + Lasso 75.7 63.6

wavelet + Lasso SMS 77.7 69.1

1× reference 74.3 65.5

approach, the Lasso regularized deconvolution method presents a slightly better per-

formance, especially for higher rank recognition. Considering the increased com-

putations required by image deconvolution, the Lasso regularized deconvolution

method is well suited for applications placing more emphasis on accuracy, while the

UM-based algorithm achieves a better balance between accuracy and computation

complexity.

In this work, we also use sharpness measures to predict FRR at different sys-

tem magnifications and determine whether a postprocessing is necessary. With a

sharpness measure selection (SMS) based on the threshold derived from Fig. 4.7,

4 and 15% of the samples from the 20× and 10× original images meet the mini-

mum criterion and hence require no postprocessing. For 20× images, the resulting

performance from only processing the images with lower sharpness values than the

threshold is identical to the case where all images are processed. As for 10× images,

a slight performance improvement is observed from the Lasso regularized deconvo-

lution method, which verifies the suitability of the derived threshold.
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Fig. 4.10. (a) 10× original image. (b) Enhanced by UM. (c) Enhanced by wavelet transform

with the approximation image processed by UM. (d) Enhanced by wavelet transform with the

approximation image processed by Lasso regularized deconvolution. (e) 1× reference image.

(f) CMC comparison across enhancement algorithms
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4.6 Conclusions

A unique face database with still images and video sequences, collected from long

distances and with high system magnifications, was constructed. This database fea-

tures various types of degradations encountered in practical long range surveil-

lance applications, with emphasis on magnification blur. Magnification blur was

addressed and identified as a major degradation source in face recognition for the

first time in this work. A special metric evaluating degradations in face image quality

caused by high magnifications was applied and its efficiency in distinguishing low

and high magnification images and predicting FRR was illustrated. Image enhance-

ment algorithms were implemented to show that degradations in FRR introduced

by magnification blur can be efficiently compensated for by applying the proper

deblurring algorithms, such as wavelet-based processing and regularized deconvo-

lution. An improvement of 26% in CMC measure was achieved via assessment and

restoration of magnification blur.

In the scope of this chapter, the FRR performances of various enhancement al-

gorithms are studied using high zoom still face images. Our future work will focus

on two aspects (1) applications with extreme zoom (> 30×), and (2) applications

using video sequences with varying zoom. In addition, to justify the use of high to

extreme optical zoom, we will look into super-resolution methods, where low reso-

lution images are registered and interpolated to produce a high resolution image via

pure image postprocessing techniques.



5 Core Faces: A Shift-Invariant Principal Component
Analysis (PCA) Correlation Filter Bank
for Illumination-Tolerant Face Recognition

Marios Savvides, B.V.K. Vijaya Kumar, and Pradeep K. Khosla

5.1 Introduction

Biometric recognition systems [112, 113] are constantly evolving by integrating

smarter and more accurate algorithms for identifying people using their physio-

logical characteristics. Among all biometrics, face is of great interest using facial

recognition technology because of easy availability of cameras and its nonintrusive

nature. However, there are many practical problems faced in face recognition

including registration errors, i.e., face images are not centered properly before being

given to the classifier, some times resulting in only partial faces being presented to

the classifiers. Many recognition algorithms [114–116] are sensitive to such regis-

tration errors, even in the scenario where a person provides a perfect frontal pose.

Illumination variations is another problem which has been addressed; however these

algorithms assume perfectly registered training and test images (the databases used

in the experiments were registered by human input). This however, is not the case

in a practical face recognition system which will rely on an automated face detec-

tor to locate the position of the face [117, 118]. Even the best of face detectors will

not provide the registration accuracy of that of a human, and more importantly in

scenarios where the face is partially occluded, only partial face image is retrieved.

What is the recognition accuracy on a partial face image? How is this registered

before it is given to the classifier? Furthermore, what happens when we have both

occlusion and illumination variations? Recent research work in using advanced cor-

relation filters for illumination tolerance have shown promising results [119–121].

However, it is not yet clear how these filters capture the variation in given set of

training images. Natural question then is how many correlation filters are needed?

Correlation filters have many good attributes; such as built-in shift-invariance, i.e., if

the test input image is shifted, then the correlation output is also shifted by the same

amount and thus peak-based metrics do not change and therefore the classification

decision is invariant to such shifts.

In Sect. 5.1.1 we review the popular minimum average correlation energy

(MACE) filter background which has had the best success in handling illumination

tolerance to get more intuition of how these filters work, and we show how we can

improve the current designs to form our hybrid PCA-correlation filter.
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5.1.1 Advanced Correlation Filters

Matched filter is the most commonly used correlation filter optimal for detecting

targets in white noise [122], however in Biometrics and specifically face recognition,

one needs one matched filter for each different appearance of a person’s face (pose,

illumination, and expression) to be able to successfully do matching. This is both

computationally and memory-wise expensive to perform. Here is where advanced

correlation filters can overcome some of these difficulties. The synthetic discrimi-

nant function (SDF) correlation filter [123] was designed to address this computa-

tion and memory issue, by designing a single correlation filter that can provide the

same peak response for a set of example training images. While this solves the com-

putation and memory issue by just having a single filter, the filter design only con-

trols the peak response at the origin, thus other points on the correlation points could

yield values larger than peak at the origin leading to false detections.

The MACE filter [124] was designed to overcome the limitations of the SDF

filter, by not only controlling the peak response at the origin but also in the whole

correlation plane; it achieves this by constraining the peak response at the origin

for every training image to a specific value (e.g., a correlation peak of 1) and mini-

mizing the average correlation plane energy among all the training images. This

energy minimization is equivalent to forcing all the values outside the origin in the

correlation plane to go to zero, thus solving the false peak detection problem of the

SDF filter. Another filter known as the minimum variance synthetic discriminant

function (MVSDF) filter [125] is optimal for detecting a target buried in noise of

known power spectral density. Optimal tradeoff SDF (OTSDF) filter [126] optimally

trades off noise tolerance for distortion tolerance. Good reference tutorials can be

found [127–129] that summarize these filters.

Let X be a d × N matrix containing the 2D Fourier transforms of N images

lexicographically reordered into each column. Let h denote our MACE filter in

vector format. We can write the peak constraints at the correlation origin as a set

of linear equations in vector-matrix format as follows:

X+h = u (5.1)

where c is a vector containing the desired correlation outputs of the N training

images. The MACE filter also minimizes the average correlation energy, and this

can be written in the Fourier domain for simplicity using Parseval’s theorem as

shown below.

e =
N∑

i=1

M∑
x=1

M∑
y=1

ci(x, y)2 =
N∑

i=1

d∑
u=1

d∑
v=1

|Xi(u, v)|2 |H(u, v)|2 = h+Dh (5.2)

where Xi(u, v) is the 2D Fourier transform of the ith training image, H(u, v) is

the 2D MACE filter and D is a diagonal matrix containing the average power spec-

trum of the training images. Minimizing h+Dh subject to the linear constraints

X+h = u yields the following closed form solution for the MACE filter directly in

the frequency domain

h = D−1X(X+D−1X)−1u (5.3)
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Since the MACE filter is designed to yield sharp correlation peaks, i.e., value

of 1 at the origin and values close to zero in the rest of the correlation plane we

use the peak-to-sidelobe ratio (PSR) defined below in (5.4) to measure this peak

sharpness. Figure 5.1 shows how this is computed on a sample correlation output,

where the sidelobe region is a 20 × 20 region centered around the peak. A 5 × 5
region around the peak is excluded to denote the correlation value corresponding to

the peak region. The larger the PSR, the better match of the target in the scene to

the MACE filter.

PSR =
peak − mean

σ
(5.4)

MACE-type filters in conjunction with the PSR metric provide a recognition

algorithm which is tolerant to even unseen illumination variations. One explanation

can be seen upon the examination of the MACE formulation in (5.6). We use the

MACE example as this provides a clearer mathematical intuitive interpretation of

what is happening in the frequency domain. We see that we can write (5.3) in two

steps:

h = D−0.5X′(X′+X′)−1u (5.5)

where X′ = D−0.5X is a spectral prefiltering step. Thus what is left is a phase-

matching process in (5.5). This effect can be shown more clearly in the figure below

for unconstrained MACE filters [130].

h = D−1m ⇒ D−0.5(D−0.5)m (5.6)

From Fig. 5.2, we see that the UMACE filter is split into two stages (a) a

prewhitening step and (b) a phase-matching stage. MACE filters are designed to

Fig. 5.1. Peak-to-sidelobe ratio (PSR) is a measure of peak sharpness and is used to classify

images that belong to a particular MACE filter

|| X (u,v) 1

D(u,v) D(u,v)
M (u,v)

Fourier transform of test  image

has both magnitude |x(u,v)| and 

phase φ
x
(u,v)  

Pre-whitening

Spectrum stage  
Phase matching with average training

phases φ
m
(u,v)  

e jφx (u,v) e−jφm(u,v)

Fig. 5.2. Shows the block diagram of spectral prewhitening being performed followed by

phase-matching step
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produce sharp peaks, we can think of sharp peaks as delta functions in the ideal

case in the spatial domain. A spatial delta function is represented by a constant

Fourier transform, thus if we want a delta-function type output in the correlation

output, the filter has to somehow (a) flatten the spectrum and (b) cancel the complex

phases (u, v) so that we end up with a constant frequency spectrum. We see from

Fig. 5.2 that this is exactly what UMACE filter is trying to do. This also explains

why illumination tolerance is achieved with these filters, since most images have

most dominant concentration of signal energy in the lower frequency spectrum, the

prewhitening processing step will emphasize higher frequencies in the test image,

where the effects of illumination variation are not so predominant (we assume that

illumination variations are mostly in the lower frequency spectrum) followed by

the most important step which is the phase matching. If the phase of the Fourier

transform matches with the phase of the filter then they will cancel out leaving a

constant flat magnitude spectrum (assuming the prewhitening step has flattened the

magnitude spectrum).

Hayes [131, 132] and others [133] have done extensive research in image

restoration from partial information (such as magnitude retrieval from phase and

vice-versa). The conclusion is that most of the intelligibility of the 2D-images is

retained in the phase information and not the magnitude of the Fourier transforms.

In fact the magnitude information can be retrieved just using the phase information

up to a scale factor [134]. We have shown that reduced complexity filters [135] focus

on the phase matching part and perform comparably to the full complexity MACE

filters, our proposed method we will only focus on the phase information and focus

on improved phase matching by setting the magnitude to 1 for all frequencies u, v
for both training and test images.

5.2 Eigenphases vs. Eigenfaces

Since we have shown that phase information in the frequency domain is most

important we develop in this section a better phase-matching process than correla-

tion filter based on a subspace approach. We use PCA [114] in the Fourier transform

domain to get a better representation of the phase spectrum of the training images.

This will form a linear subspace that models the frequency phase variations for a

particular person’s face images. We also show an important fact that just perform-

ing PCA in the Fourier domain alone does not achieve any additional benefits using

the full frequency spectrum content, in fact it results in the same principal compo-

nents (or eigenvectors) resulting from PCA on the space domain images (related

via an inverse Fourier transform). We will use Cs and Cf to denote the covariance

matrices of the data in the space domain and frequency domain, respectively.

Cf =
N∑

i=1

{TDFT (x − m)}{TDFT (x − m)}+ = TDFTXX+T−1
DFT (5.7)
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where TDFT is the discrete Fourier transform matrix and XX+ is the spatial

covariance matrix Cs defined as

XX+ =
N∑

i=1

(x − m)(x − m)+ = Cs (5.8)

PCA diagonalizes the covariance matrix Cf using the orthogonal eigenvectors

obtained in (5.9)

Cfvf = λvf (5.9)

Substituting Cf from (5.7) in (5.9) we get

TDFTXX+T−1
DFTvf = λvf (5.10)

Premultiplying (5.10) by T−1
DFT we get

XX+T−1
DFTvf = λT−1

DFTvf (5.11)

We now formulate the space domain PCA and noting that the space domain

covariance matrix is Cs = XX+

Csvs = λvs

XX+vs = λvs

(5.12)

Comparing (5.12) with (5.11) we see by inspection that there is a relation between

the space and frequency domain eigenvectors related by an inverse Fourier transform

as follows:

vs = T−1
DFTvf (5.13)

Thus performing PCA directly in the frequency domain alone does not provide any

additional advantage by itself, the eigenvectors provided by both approaches are the

same and ranked in the same order and only differ by a sign change as shown in

Fig. 5.3. However performing eigenanalysis on the phase spectra yields eigenphases

as shown in Fig. 5.4 which we will show are tolerant to occlusions and illumination

variations in the CMU PIE dataset.

PCA in the frequency domain on only the phase spectrums proves to be very

powerful for illumination tolerant face recognition. We show experimental results

on the CMU PIE [136] database and compare to other standard illumination tolerant

algorithms for comparison such as Fisherfaces [115], 3D linear subspace [116] and

traditional PCA [114]. The CMU PIE dataset [136] used consists of 65 people each

with 21 different illumination variations captured under no ambient background,

this being the hardest illumination set. Figure 5.5 shows 21 sample images from

person 1 to denote the type of illumination variations in the dataset. We compared 12

different experiments using a variety of training images as shown in Fig. 5.6. These

we split into two types, different training images that contained some illumination
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Fig. 5.3. Top row: eigenvectors obtained by performing spatial domain PCA. Bottom row:

inverse Fourier transformed eigenvectors of frequency domain PCA

Fig. 5.4. Top row: eigenphases (phase angles). Bottom row: inverse Fourier transformed

eigenphases

Fig. 5.5. Twenty-one images of Person 1 of the CMU pose illumination expression (PIE)

database captured under no ambient lighting
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Experiment No. #

1 3, 7, 16

2 1, 10, 16

3 2, 7, 16

4 4, 7, 13

5 1, 2, 7, 16

6 3, 10, 16

7 3, 16, 20

8

9

5, 6, 7, 8, 9, 10, 18, 19, 20

5, 6, 7, 8, 9, 10, 11, 12

10 5, 6, 7, 8, 9, 10,

11 5, 7, 9, 10,

12 7, 10, 19

13 6, 7, 8

14

15

8, 9, 10

18, 19, 20

Index # of Training Image

Images contain extreme
illumination variation

Images captured using near
frontal illumination lighting (i.e.
do not contain extreme lighting

exemplars)

Fig. 5.6. Different experiments using different training scenarios. The indices indicate the

type of illumination used for training for each person as shown in Fig. 5.5

Fig. 5.7. PIE cropped test dataset with only the eye-region visible. This test set has occlusion

+ illumination variations while the training is performed on whole face images

variation (experiments 1–7) and training images that contained little or no illumina-

tion variation (experiments 8–15) where experiment 12 is the hardest using training

images 7,10,19 which are frontal neutral lighting. This is the hardest experiment

as any classification algorithm must be able to generalize and verify images of that

person under illumination variations of any kind (the rest of the 18 illumination

variations).

To show that our algorithm can handle illumination and occlusion, we also

cropped the test images to only include the eye-region even though the system

was trained on whole faces (as shown in Fig. 5.7). Figure 5.8 summarizes the
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Fig. 5.8. Rank 1 recognition rate for 15 different experiments using the cropped eye-region

PIE dataset (but trained on whole face regions)

performance result of each experiment for our eigenphase approach to other methods,

clearly showing that while other methods cannot handle occlusion and illumination,

even on the hardest experiment 12, eigenphases still perform very well.

While we have demonstrated that phase spectrums capture the discrimination

detail in face images and are illumination tolerant, one of the limitations of this

approach is the lack of shift-invariance, i.e., if the test image is shifted then perfor-

mance will degrade. In order to achieve shift-invariance and still have the distortion

tolerance to occlusion and illumination we develop CoreFace theory in Sect. 5.3 for

a complete shift-invariant hybrid PCA correlation filter.

5.3 CoreFaces

In this section we show how we extend the eigenphase approach to be shift-invariant.

The task is to develop a framework to compute the reconstructed phase spectrum at

each possible location in the scene to achieve shift-invariance and we show how

this will too formulate into a filter bank. Let us assume that we have computed the

eigenvectors of the phase-only spectra of the training images which we denote as vi,

these are then placed along the columns of matrix V. We then want to reconstruct

the phase-only image at each shift; to do this we need to compute the projection

coefficients p defined as follows:

p = V+(x − m) (5.14)
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Therefore the reconstructed image is computed using the coefficients as follows

r = Vp + m (5.15)

However we want to compute the phase-only correlation (or inner-product) of this

reconstructed image and the test image for all shifts. We write this correlation value

c as follows:

c = r+x (5.16)

Substituting (5.15) in (5.16) we get

c = (Vp + m)+x = p+V+x + m+x (5.17)

c = [V+(x − m)]+V+x + m+x

= x+VV+x − m+VV+x + m+x (5.18)

= ||V+x||2−(m+V)(V+x) + m+x

Looking closely at (5.18) we see how we can write the above equation in

terms of cross-correlations of the input image and the eigenvectors to compute an

correlation output plane c which contains the phase-only cross-correlation of the

reconstructed phase-only image and the test image at all possible shifts in the scene

image. This is shown in (5.19) where CORR(a,b) denotes computing the cross-

correlation between images a and b using FFTs.

c(x, y) =
N∑

i=1

CORR(vi,x)2−
N∑

i=1

(m+vi)CORR(vi,x) + CORR(m,x)

(5.19)

Thus c(x,y) contains the phase-only correlation at each spatial location (x,y), using

this correlation output plane we search for the peak and compute the PSR just as

done previously. Figure 5.9 shows the CoreFace output on a face image centered in

the scene, giving a very large PSR of 108.45, and the bottom plot depicts the shift-

invariance of the CoreFace approach where the same face image was shifted up 40

pixels in the face image where the PSR remains exactly the same but the peak is

shifted up by 40 pixels showing the location of the face in the scene. Figure 5.10

shows PSR plot from MACE filter CoreFace trained on person 1 and tested on

the whole dataset. The top line depicts the highest authentic PSR plot achieved by

CoreFace and the bottom 2 lines depict the maximum impostor PSRs scores from

each of 64 people under each of the 21 illumination variations.

Another advantage of the CoreFace method, one can compute (5.19) iteratively

starting from the most dominant eigenvectors (i.e., N = 1 . . . M), and computing

the PSR after each iteration, if the PSR is above a matching threshold there is no

need to continue and compute the correlation of the rest of the eigenvectors. Thereby

providing a computationally efficient manner for computing the PSR incrementally

if N is very large (Table 5.1).
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Fig. 5.9. Top row: CoreFace output from a face image centered in the scene. Bottom row:

CoreFace output from the same face image shifted up 40 pixels. The PSR remains exactly the

same as the unshifted face and the peak is shifted up by the same amount

Fig. 5.10. Shows the PSRs from MACE and CoreFaces synthesized from images from class 1

and tested on the whole PIE database. The top plots belong to PSRs from class 1 and the

bottom plots belong to the maximum PSRs from the 21 images of the other 64 people (i.e.,

1,344 PSRs)



5 Core Faces 71

Table 5.1. Face recognition rates on eye-cropped PIE database

method recognition rate (%)

MACE 95.8

CoreFaces 99.92

5.4 Discussion

This chapter briefly introduced advanced correlation filter designs such as the

MACE filter, and showed that these types of filters work by performing a spectral

prefiltering operation followed by phase-matching process. With this insight, we

show the development of eigenphases which extend traditional linear subspace

modeling to spectral phase modeling, showing that we can achieve distortion

tolerance to illumination variations and occlusions. We then further extend the

eigenphase model to achieve complete shift-invariance by developing the theory

behind CoreFaces which is a hybrid PCA correlation filter bank that performs phase

matching in a shift-invariant manner in the input scene. Results show the shift-

invariance and face recognition improvement of the CoreFace approach over the

MACE filters on the CMU PIE dataset.
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6 Towards Person Authentication by Fusing
Visual and Thermal Face Biometrics

Ognjen Arandjelović, Riad Hammoud, and Roberto Cipolla

6.1 Introduction

In this chapter we focus on face appearance-based biometrics. The cheap and read-

ily available hardware used to acquire data, their non-invasiveness and the ease of

employing them from a distance and without the awareness of the user, are just some

of the reasons why these continue to be of great practical interest.

However, a number of research challenges remain. Specifically, face biometrics

have traditionally focused on images acquired in the visible light spectrum and these

are greatly affected by such extrinsic factors such as the illumination, camera angle

(or, equivalently, head pose) and occlusion. In practice, the effects of changing pose

are usually least problematic and can oftentimes be overcome by acquiring data over

a time period, e.g., by tracking a face in a surveillance video. Consequently, image

sequence or image set matching has recently gained a lot of attention in the literature

[137–139] and is the paradigm adopted in this chapter as well. In other words, we

assume that the training image set for each individual contains some variability in

pose, but is not obtained in scripted conditions or in controlled illumination.

In contrast, illumination is much more difficult to deal with: the illumination

setup is in most cases not practical to control and its physics is difficult to accurately

model. Thermal spectrum imagery is useful in this regard as it is virtually insensitive

to illumination changes, as illustrated in Fig. 6.1. On the other hand, it lacks much

of the individual, discriminating facial detail contained in visual images. In this

sense, the two modalities can be seen as complementing each other. The key idea

behind the system presented in this chapter is that robustness to extreme illumination

changes can be achieved by fusing the two. This paradigm will further prove useful

when we consider the difficulty of recognition in the presence of occlusion caused

by prescription glasses.

6.1.1 Mono-Sensor Based Techniques

Optical sensors

Among the most used sensors in face biometric systems is the optical imager.

This is driven by its availability and low-cost. An optical imager captures the light

reflectance of the face surface in the visible spectrum. The visible spectrum provides
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Fig. 6.1. Sensitivity to lighting conditions: illumination changes have a dramatic effect on

images acquired in the visible light spectrum (top row). In contrast, thermal imagery (bottom
row) shows remarkable invariance

features that depend only on surface reflectance. Thus, it is obvious that the face

appearance changes according to the ambient light. In order to overcome the light-

ing, pose and facial expression changes, a flurry of face recognition algorithms, from

the two well-known broad categories, appearance-based and feature-based methods,

has been proposed [140]. Appearance-based methods find the global properties of

the face pattern and recognize the face as a whole. In contrast, feature-based meth-

ods [141–143] explore the statistical and geometrical properties of facial features

like eyes and mouth. The face recognition performance depends on the accuracy of

facial feature detection. Moreover, local and global lighting changes cause existing

face recognition techniques for the visible imagery to perform poorly.

Infrared sensors

Recent studies have shown that face recognition in the thermal spectrum offers a

few distinct advantages over the visible spectrum, including invariance to ambi-

ent illumination changes [144–147]. This is due to the fact that a thermal infrared

sensor measures the heat energy radiation emitted by the face rather than the light

reflectance. A thermal sensor generates imaging features that uncover thermal char-

acteristics of the face pattern. Indeed, thermal face recognition algorithms attempt

to take advantage of such anatomical information of the human face as unique

signatures.

Appearance-based face recognition algorithms applied to thermal IR imaging

consistently performed better than when applied to visible imagery, under various

lighting conditions and facial expressions [145, 148–150]. Further performance

improvements were achieved using decision-based fusion [145]. In contrast to other

techniques, Srivastava et al. [151], performed face recognition in the space of
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K-Bessel form. First, they decompose each infrared face image using Gabor

filters. Then, they represent the face by a few parameters by modelling the mar-

ginal density of the Gabor filter coefficients using Bessel functions. This approach

has been improved by Buddharaju et al. [152]. Recently, Friedrich et al. [153]

showed that IR-based recognition is less sensitive to changes in 3D head pose and

facial expression.

6.1.2 Multi-Sensor Based Techniques

As the surface of the face and its temperature have nothing in common, one would

state that the extracted cues from both sensors are not redundant and yet comple-

mentary. Several attempts have been made in face recognition based on the fusion of

different types of data from multiple sensors. Face recognition algorithms based on

the fusion of visible and thermal IR images demonstrated higher performance than

individual image types [154–157]. Biometric systems that integrate face and speech

signals [158], the face and fingerprint information [159], and the face and the ear

images [160] improved the accuracy in personal identification.

Recently, Heo et al. [161] proposed two types of visible and thermal fusion tech-

nique, the first fuses low-level data while the second fuses matching outputs. Data

fusion was implemented by applying pixel-based weighted averaging of coregis-

tered visual and thermal images. Decision fusion was implemented by combining

the matching scores of individual recognition modules. To deal with occlusions

caused by eyeglasses in thermal imagery, they used a simple ellipse fitting technique

to detect the circle-like eyeglass regions in the IR image and replaced them with an

average eye template. Using a commercial face recognition system, Faceit [162],

they demonstrated improvements in recognition accuracy.

6.2 Method Details

In the sections that follow we explain our system in detail, the main components of

which are conceptually depicted in Fig. 6.2.

6.2.1 Matching Image Sets

In this chapter we deal with face recognition from sets of images, both in the visual

and thermal spectrum. We will show how to achieve illumination invariance using

a combination of simple data preprocessing (Sect. 6.2.2), local features (Sect. 6.2.3)

and modality fusion (see Sect. 6.2.4). Hence, the requirements for our basic set

matching algorithm are those of (a) some pose generalization and (b) robustness

to noise. We compare two image sets by modelling the variations within a set using

a linear subspace and comparing two subspaces by finding the most similar modes

of variation within them.
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Visual imagery (image set) Thermal imagery (image set)

Features

Facial feature detection & registration

Modality and data fusion

Glasses detection

PreprocessingPreprocessing
Trained classifier

Fig. 6.2. System overview: our system consists of three main modules performing (a) data

preprocessing and registration, (b) glasses detection, and (c) fusion of holistic and local face

representations using visual and thermal modalities

The modelling step is a simple application of principal component analysis

(PCA) without mean subtraction. In other words, given a data matrix d (each col-

umn representing a rasterized image), the subspace is spanned by the eigenvectors

of the matrix C = ddT corresponding to the largest eigenvalues; we used 5D sub-

spaces, as sufficiently expressive to on average explain over 90% of data variation

within intrinsically low-dimensional face appearance changes in a set.

The similarity of two subspaces U1 and U2 is quantified by the cosine of the

smallest angle between two vectors confined to them:

ρ = cos θ = max
u∈U1

max
v∈U2

uT v. (6.1)

The quantity ρ is also known as the first canonical correlation [163]. It is this implicit

“search” over entire subspaces that achieves linear pose interpolation and extrapo-

lation, by finding the most similar appearances described by the two sets [164].

The robustness of canonical correlations to noise is well detailed in [165] (also

see [166]).

Further appeal of comparing two subspaces in this manner is contained in its

computational efficiency. If B1 and B2 are the corresponding orthonormal basis

matrices, the computation of ρ can be rapidly performed by finding the largest sin-

gular value of the 5 × 5 matrix BT
1 B2 [165].
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6.2.2 Data Preprocessing and Feature Extraction

The first stage of our system involves coarse normalization of pose and brightness.

We register all faces, both in the visual and thermal domain, to have the salient

facial features aligned. Specifically, we align the eyes and the mouth due to the ease

of detection of these features (e.g., see [167–171]). The three point correspondences,

between the detected and the canonical features’ locations, uniquely define an affine

transformation which is applied to the original image. Faces are then cropped to

80 × 80 pixels, as shown in Fig. 6.3.

Coarse brightness normalization is performed by band-pass filtering the images

[167, 172]. The aim is to reduce the amount of high-frequency noise as well as

extrinsic appearance variations confined to a low-frequency band containing little

discriminating information. Most obviously, in visual imagery, the latter are caused

by illumination changes, owing to the smoothness of the surface and albedo of

faces [173].

We consider the following type of a band-pass filter:

IF = I ∗ Gσ=W1 − I ∗ Gσ=W2 , (6.2)

which has two parameters – the widths W1 and W2 of isotropic Gaussian kernels.

These are estimated from a small training corpus of individuals in different illu-

minations. Figure 6.4 shows the recognition rate across the corpus as the values of

the two parameters are varied. The optimal values were found to be 2.3 and 6.2 for

visual data; the optimal filter for thermal data was found to be a low-pass filter with

W2 = 2.8 (i.e., W1 was found to be very large). Examples are shown in Fig. 6.5.

It is important to note from Fig. 6.4 that the recognition rate varied smoothly with

changes in kernel widths, showing that the method is not very sensitive to their exact

values, which is suggestive of good generalization to unseen data.

The result of filtering visual data is further scaled by a smooth version of the

original image:

ÎF (x, y) = IF (x, y)./(I ∗ Gσ=W2), (6.3)

where ./ represents element-wise division. The purpose of local scaling is to

equalize edge strengths in dark (weak edges) and bright (strong edges) regions of

Fig. 6.3. Registration: shown is the original image in the visual spectrum with detected facial

features marked by yellow circles (left), the result of affine warping the image to the canonical

frame (centre) and the final registered and cropped facial image
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Fig. 6.4. Band-pass filter: the optimal combination of the lower and upper band-pass filter

thresholds is estimated from a small training corpus. The plots show the recognition rate

using a single modality, (a) visual and (b) thermal, as a function of the widths W1 and W2 of

the two Gaussian kernels in (6.2). It is interesting to note that the optimal band-pass filter for

the visual spectrum passes a rather narrow, mid-frequency band, whereas the optimal filter

for the thermal spectrum is in fact a low-pass filter

(a) Visual (b) Thermal

Fig. 6.5. Preprocessing: the effects of the optimal band-pass filters on registered and cropped

faces in (a) visual and (b) thermal spectra

the face; this is similar to the self-quotient image (SQI) of Wang et al. [174]. This

step further improves the robustness of the representation to illumination changes,

see Sect. 6.3.

6.2.3 Single Modality-Based Recognition

We compute the similarity of two individuals using only a single modality (visual or

thermal) by combining the holistic face representation described in Sect. 6.2.2 and

a representation based on local image patches. These have been shown to benefit

recognition in the presence of large pose changes [139].

As before, we use the eyes and the mouth as the most discriminative regions,

by extracting rectangular patches centred at the detections, see Fig. 6.6. The overall

similarity score is obtained by weighted summation:

ρv/t = ωh · ρh + ωe · ρe + (1 − ωh − ωe) · ρm, (6.4)
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Fig. 6.6. Features: in both the visual and the thermal spectrum our algorithm combines the

similarities obtained by matching the holistic face appearance and the appearance of three

salient local features – the eyes and the mouth

where ρm, ρe and ρh are the scores of separately matching, respectively, the mouth,

the eyes and the entire face regions, and ωh and ωe the weighting constants.

The optimal values of the weights were estimated from the offline training cor-

pus. For the visual spectrum we obtained ωe = 0.3, while the mouth region was

found not to improve recognition (i.e., ωh = 0.7). The relative magnitudes of the

weights were found to be different in the thermal spectrum, both the eye and the

mouth region contributing equally to the overall score: ωe = 0.1, ωh = 0.8.

6.2.4 Fusing Modalities

Until now we have focused on deriving a similarity score between two individuals

given sets of images in either thermal or visual spectrum. A combination of holistic

and local features was employed in the computation of both. However, the greatest

power of our system comes from the fusion of the two modalities.

Given ρv and ρt, the similarity scores corresponding to visual and thermal data,

we compute the joint similarity as:

ρf = ωv(ρv) · ρv + (1 − ωv(ρv)) · ρt. (6.5)

Notice that the weighting factors are no longer constants, but functions. The key

idea is that if the visual spectrum match is very good (i.e., ρv is close to 1.0), we can

be confident that illumination difference between the two images sets compared is

mild and well compensated for by the visual spectrum preprocessing of Sect. 6.2.2.

In this case, visual spectrum should be given relatively more weight than when the

match is bad and the illumination change is likely more drastic.

The function ωv ≡ ωv(ρv) is estimated in three stages: first (a) we estimate

p̂(ωv, ρv), the probability that ωv is the optimal weighting given the estimated sim-

ilarity ρv , then (b) compute ω(ρv) in the maximum a posteriori sense and finally

(c) make an analytic fit to the obtained marginal distribution. Step (a) is challenging

and we describe it next.
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Iterative density estimate

The principal difficulty of estimating p̂(ωv, ρv) is of practical nature: in order to

obtain an accurate estimate (i.e., a well-sampled distribution), a prohibitively large

training database is needed. Instead, we employ a heuristic alternative. Much like

before, the estimation is performed using the offline training corpus.

Our algorithm is based on an iterative incremental update of the density, initial-

ized as uniform over the domain ω, ρ ∈ [0, 1]. We iteratively simulate matching of

an unknown person against a set gallery individuals. In each iteration of the algo-

rithm, these are randomly drawn from the offline training database. Since the ground

truth identities of all persons in the offline database is known, for each ω = kΔω
we can compute the separation, i.e., the difference between the similarities of the

test set and the set corresponding to it in identity, and that between the test set and

the most similar set that does not correspond to it in identity. Density p̂(ω, ρ) is

then incremented at each (kΔω, ρp,p) proportionally to δ(kΔω) after being passed

through the sigmoid function. This is similar to the algorithm proposed in [175].

Input: visual data dv(person, illumination),

thermal data dt(person, illumination).

Output: density estimate p̂(ω, ρv).

1: Init.
p̂(ω, ρv) = 0,

2: Iteration
for all illuminations i, j and persons p

3: Iteration
for all k = 0, . . . , 1/Δω, ω = kΔω

4: Separation given ω
δ(kΔω) = minq �=p[ωρp,p

v + (1 − ω)ρp,p
t

−ωρp,q
v + (1 − ω)ρp,q

t ]

5: Update density estimate
p̂(kΔω, ρp,p

v ) = p̂(kΔω, ρp,p
v )

+sig(C · δ(kΔω))

6: Smooth the output
p̂(ω, μ) = p̂(ω, μ) ∗ Gσ=0.05

7: Normalize to unit integral
p̂(ω, ρ) = p̂(ω, ρ)/

∫
ω

∫
ρ
p̂(ω, ρ)dρdω

Fig. 6.7. Offline: optimal fusion training algorithm
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Fig. 6.8. Modality fusion: the contribution of visual matching, as a function of the similarity

of visual imagery. A low similarity score between image sets in the visual domain is indicative

of large illumination changes and consequently our algorithm leant that more weight should

be placed on the illumination-invariant thermal spectrum

Figure 6.7 summarizes the proposed offline learning algorithm. An analytic fit

to p̂(ωv) in the form (1 + exp(a))/(1 + exp(a/ρv)) is shown in Fig. 6.8.

6.2.5 Dealing with Glasses

The appeal of using the thermal spectrum for face recognition stems mainly from

its invariance to illumination changes, in sharp contrast to visual spectrum data.

The exact opposite is true in the case of prescription glasses, which appear as dark

patches in thermal imagery, see Fig. 6.5. The practical importance of this can be

seen by noting that in the US in 2000 roughly 96 million people, or 34% of the total

population, wore prescription glasses [176].

In our system, the otherwise undesired, gross appearance distortion that glasses

cause in thermal imagery is used to help recognition by detecting their presence.

If the subject is not wearing glasses, then both holistic and all local patches-based

face representations can be used in recognition; otherwise the eye regions in thermal

images are ignored.

Glasses detection

We detect the presence of glasses by building representations for the left eye region

(due to the symmetry of faces, a detector for only one side is needed) with and

without glasses, in the thermal spectrum. The foundations of our classifier are laid

in Sect. 6.2.1. Appearance variations of the eye region with and without glasses
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Glasses
ON

Glasses
OFF

Fig. 6.9. Appearance models: shown are examples of glasses-on (top) and glasses-off

(bottom) thermal data used to construct the corresponding appearance models for our

glasses detector

are represented by two 6D linear subspaces, see Fig. 6.9 for example training data.

Patches extracted from a set of thermal imagery of a novel person is then compared

with each subspace. The presence of glasses is deduced when the corresponding

subspace results in a higher similarity score. We obtain close to flawless perfor-

mance on our data set (also see Sect. 6.3 for description), as shown in Fig. 6.10.

The presence of glasses severely limits what can be achieved with thermal

imagery, the occlusion heavily affecting both the holistic face appearance as well

as that of the eye regions. This is the point at which our method heavily relies on

decision fusion with visual data, limiting the contribution of the thermal spectrum

to matching using mouth appearance only, i.e., setting ωh = ωe = 0.0 in (6.4).

6.3 Empirical Evaluation

We evaluated the described system on the Dataset 02: IRIS Thermal/Visible Face
Database subset of the object tracking and classification beyond the visible spec-
trum (OTCBVS) database,1 freely available for download at http://www.cse.

ohio-state.edu/OTCBVS-BENCH/. Briefly, this database contains 29 individu-

als, 11 roughly matching poses in visual and thermal spectra and large illumination

variations (some of these are exemplified in Fig. 6.11).

Our algorithm was trained using all images in a single illumination in which all

three salient facial features could be detected. This typically resulted in 7–8 images

in the visual and 6–7 in the thermal spectrum, see Fig. 6.12, and roughly ±45◦ yaw

range, as measured from the frontal face orientation.

The performance of the algorithm was evaluated both in 1-to-N and 1-to-1

matching scenarios. In the former case, we assumed that test data corresponded

to one of people in the training set and recognition was performed by associating it

with the closest match. Verification (or 1-to-1 matching, “is this the same person?”)

1 IEEE OTCBVS WS Series Bench; DOE University Research Program in Robotics

under grant DOE-DE-FG02-86NE37968; DOD/TACOM/NAC/ARC Program under grant

R01-1344-18; FAA/NSSA grant R01-1344-48/49; Office of Naval Research under grant

#N000143010022.
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Fig. 6.10. Glasses Detection Results: inter- and intra-class similarities across our data set

performance was quantified by looking at the true positive admittance rate for a

threshold that corresponds to 1 admitted intruder in 100.

6.3.1 Results

A summary of 1-to-N matching results is shown in Table 6.1.

Firstly, note the poor performance achieved using both raw visual as well as

raw thermal data. The former is suggestive of challenging illumination changes

present in the OTCBVS data set. This is further confirmed by significant improve-

ments gained with both band-pass filtering and the SQI which increased the average
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(a) Visual

(b) Thermal

Fig. 6.11. Example training sets: each row corresponds to a single training (or test) set of

images used for our algorithm in (a) the visual and (b) the thermal spectrum. Note the

extreme changes in illumination, as well as that in some sets the user is wearing glasses and in

some not
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(b) Thermal

Fig. 6.12. Training sets: shown are histograms of the number of images per person used to

train our algorithm. Depending on the exact head poses assumed by the user we typically

obtained 7–8 visual spectrum images and typically a slightly lower number for the thermal

spectrum. The range of yaw angles covered is roughly ±45◦ measured from the frontal face

orientation

Table 6.1. 1-to-N matching (recognition) results: shown is the average rank 1 recognition

rate using different representations across all combinations of illuminations. Note the perfor-

mance increase with each of the main features of our system: image filtering, combination of

holistic and local features, modality fusion and prescription glasses detection

Representation Recognition

Holistic raw data 0.58

Holistic, band-pass 0.78

Visual Holistic, SQI filtered 0.85

Mouth + eyes + holistic
0.87

Data fusion, SQI filtered

Holistic raw data 0.74

Holistic raw w/
0.77

Thermal Glasses detection

Holistic, low-pass filtered 0.80

Mouth + eyes + holistic
0.82

Data fusion, low-pass filtered

Proposed thermal + visual fusion
w/o glasses detection 0.90

w/glasses detection 0.97
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(b) Band-pass filtered
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(c) Self-Quotient Image filtered

Fig. 6.13. Holistic representations Receiver–Operator Characteristics: visual (blue) and ther-

mal (red) spectra

Table 6.2. Holistic, 1-to-1 matching (verification): a summary of the comparison of different

image processing filters for 1 in 100 intruder acceptance rate. Both the simple band-pass

filter, and even further its locally scaled variant, greatly improve performance. This is most

significant in the visual spectrum, in which image intensity in the low spatial frequency is

most affected by illumination changes

Representation Visual Thermal

1% intruder acceptance

Unprocessed/raw 0.2850 0.5803

Band-pass filtered (BP) 0.4933 0.6287

Self-quotient image (SQI) 0.6410 0.6301

recognition rate for, respectively, 35% and 47%. The same is corroborated by the

Receiver–Operator Characteristic (ROC) curves in Fig. 6.13 and 1-to-1 matching

results in Table 6.2.
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Table 6.3. Isolated local features, 1-to-1 matching (verification): a summary of the results for

1 in 100 intruder acceptance rate. Local features in isolation perform very poorly

Representation Visual (SQI) Thermal (BP)

1% intruder acceptance

Eyes 0.1016 0.2984

Mouth 0.1223 0.3037
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Fig. 6.14. Isolated local features Receiver–Operator Characteristics: Visual (blue) and ther-

mal (red) spectra

On the other hand, the reason for low recognition rate of raw thermal imagery

is twofold: it was previously argued that the two main limitations of this modality

are the inherently lower discriminative power and occlusions caused by prescription

glasses. The addition of the glasses detection module is of little help at this point –

some benefit is gained by steering away from misleadingly good matches between

any two people wearing glasses, but it is limited in extent as a very discriminative

region of the face is lost. Furthermore, the improvement achieved by optimal band-

pass filtering in thermal imagery is much more modest than with visual data, in-

creasing performance, respectively, by 35% and 8%. Similar increase was obtained

in true admittance rate (42% versus 8%), see Table 6.3.

Neither the eyes or the mouth regions, in either the visual or thermal spectrum,

proved very discriminative when used in isolation, see Fig. 6.14. Only 10–12% true

positive admittance was achieved, as shown in Table 6.3. However, the proposed

fusion of holistic and local appearance offered a consistent and statistically signi-

ficant improvement. In 1-to-1 matching the true positive admittance rate increased

for 4–6%, while the average correct 1-to-N matching improved for roughly 2–3%

(Table 6.4).

The greatest power of the method becomes apparent when the two modalities,

visual and thermal, are fused. In this case the role of the glasses detection module is

much more prominent, drastically decreasing the average error rate from 10% down
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Table 6.4. Holistic and local features, 1-to-1 matching (verification): a summary of the results

Representation Visual (SQI) Thermal (BP)

1% intruder acceptance

Holistic + Eyes 0.6782 0.6499

Holistic + Mouth 0.6410 0.6501

Holistic + Eyes + Mouth 0.6782 0.6558

Table 6.5. Feature and modality fusion, 1-to-1 matching (verification): a summary of the

results

Representation True admission rate

1% intruder acceptance

Without glasses detection 0.7435

With glasses detection 0.8014

to 3%, see Table 6.1. Similarly, the true admission rate increases to 74% when data

is fused without special handling of glasses, and to 80% when glasses are taken into

account, see Table 6.5.

6.4 Conclusion

In this chapter we described a system for personal identification based on a face

biometric that uses cues from visual and thermal imagery. The two modalities are

shown to complement each other, their fusion providing good illumination invari-

ance and discriminative power between individuals. Prescription glasses, a major

difficulty in the thermal spectrum, are reliably detected by our method, restricting

the matching to non-affected face regions. Finally, we examined how different pre-

processing methods affect recognition in the two spectra, as well as holistic and local

feature-based face representations. The proposed method was shown to achieve a

high recognition rate (97%) using only a small number of training images (5–7) in

the presence of large illumination changes.

Our results suggest several possible avenues for improvement. We intend to

make further use of the thermal spectrum, by not only detecting the glasses, but

also by segmenting them out. This is challenging across large pose variations, such

as those contained in our test set. Another research direction we would like to pur-

sue is that of synthetically enriching the training corpus to achieve increased ro-

bustness to pose differences between image sets (cf. [177,178]). Additionally, more

advanced set matching methods can be used for better discriminative performance,

e.g., [138, 179, 180]. Finally, we note that a research challenge that remains, and

which has not been addressed in this chapter, is that of changing facial expression.



7 Multispectral Face Recognition: Fusion of Visual
Imagery with Physiological Information

Pradeep Buddharaju and Ioannis Pavlidis

7.1 Introduction

Biometrics has received a lot of attention during the last few years both from the

academic and business communities. It has emerged as a preferred alternative to

traditional forms of identification, like card IDs, which are not embedded into

one’s physical characteristics. Research into several biometric modalities includ-

ing face, fingerprint, iris, and retina recognition has produced varying degrees of

success [181]. Face recognition stands as the most appealing modality, since it is the

natural mode of identification among humans and is totally unobtrusive. At the same

time, however, it is one of the most challenging modalities [182]. Research into face

recognition has been biased toward the visual spectrum for a variety of reasons.

Among those is the availability and low cost of visual band cameras and the unde-

niable fact that face recognition is one of the primary activities of the human visual

system. Machine recognition of human faces, however, has proven more problem-

atic than the seemingly effortless face recognition performed by humans. The major

culprit is light variability, which is prevalent in the visual spectrum due to the reflec-

tive nature of incident light in this band. Secondary problems are associated with the

difficulty of detecting facial disguises [183].

As a solution to the aforementioned problems, researchers have started inve-

stigating the use of thermal infrared for face recognition purposes [184–186].

However, many of these research efforts in thermal face recognition use the ther-

mal infrared band only as a way to see in the dark or reduce the deleterious effect of

light variability [187,188]. Methodologically, they do not differ very much from face

recognition algorithms in the visual band, which can be classified as appearance-

based [189, 190] and feature-based approaches [191, 192].

Recently, attempts have been made to fuse the visual and thermal infrared

modalities to increase the performance of face recognition [193–198]. However,

almost all these approaches use similar algorithms for extracting features from both

visual and thermal infrared images. In this chapter, we present a novel approach

to the problem of thermal facial recognition that realizes the full potential of

the thermal infrared band. Our goal is to promote a different way of thinking in

the area of face recognition in thermal infrared, which can be approached in a

distinct manner when compared with other modalities. It consists of a statistical face

segmentation and a physiological feature extraction algorithm tailored to thermal

phenomenology. The use of vessel structure for human identification has been
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Fig. 7.1. Multispectral face recognition methodology

studied during recent years using traits such as hand vessel patterns [199, 200]

and finger vessel patterns [201, 202]. Prokoski et al. anticipated the possibility of

extracting the vascular network from thermal facial images and using it as a feature

space for face recognition [203]. However, they did not present an algorithmic

approach for achieving this. We present a full methodology to extract and match

the vascular network from thermal facial imagery [204].

Figure 7.1 depicts the essence of the proposed multispectral face recognition

methodology. The goal of face recognition is to match a query face image against a

database of facial images to establish the identity of an individual. We collect both

thermal and visual facial images of the subject whose identity needs to be tested. We

extract the thermal minutia points (TMPs) from the thermal facial image and match

them against TMPs of subjects already stored in the database. We then extract the

principal components (eiganfaces) from the visual face image and project it to the

face space constructed from visual database images. The eigenspace match score is

fused with the TMP match score to produce the final match score.

7.2 Physiological Feature Extraction from Thermal Images

A thermal infrared camera with good sensitivity (NEDT > 0.025◦C) provides

the ability to directly image superficial blood vessels on the human face [205].

The pattern of the underlying blood vessels (see Fig. 7.2) is characteristic to each

individual, and the extraction of this vascular network can provide the basis for a fea-

ture vector. Figure 7.3 outlines the architecture of the feature extraction algorithm.

7.2.1 Face Segmentation

Due to its physiology, a human face consists of “hot” parts that correspond to tissue

areas that are rich in vasculature and “cold” parts that correspond to tissue areas
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Fig. 7.2. Generic maps of the superficial blood vessels on the face – courtesy of Primal Pic-

tures [206]: (a) Overview of arterial network. (b) Overview of venous network. (c) Arteries

and veins together under the facial surface

Fig. 7.3. Architecture of physiological feature extraction algorithm

with sparse vasculature. This casts the human face as a bimodal temperature distrib-

ution entity, which can be modeled using a mixture of two Normal distributions.

Similarly, the background can be described by a bimodal temperature distribu-

tion with walls being the “cold” objects and the upper part of the subject’s body

dressed in cloths being the “hot” object. Figure 7.4b shows the temperature distri-

butions of the facial skin and the background from a typical thermal facial image.

We approach the problem of delineating facial tissue from the background using a

Bayesian framework [204,207], because we have a priori knowledge of the bimodal

nature of the scene.

We call θ the parameter of interest, which takes two possible values (skin s
or background b) with some probability. For each pixel x in the image at time t,



94 P. Buddharaju and I. Pavlidis

we draw our inference of whether it represents skin (i.e., θ = s) or background

(i.e., θ = b) based on the posterior distribution p(t)(θ|xt) given by:

p(t)(θ|xt) =

{
p(t)(s|xt), when θ = s,

p(t)(b|xt) = 1 − p(t)(s|xt), when θ = b.
(7.1)

We develop the statistics only for skin and then the statistics for the background can

easily be inferred from (7.1).

According to the Bayes’ theorem:

p(t)(s|xt) =
π(t)(s)f(xt|s)

π(t)(s)f(xt|s) + π(t)(b)f(xt|b) . (7.2)

Here, π(t)(s) is the prior skin distribution and f(xt|s) is the likelihood for pixel x
representing skin at time t. In the first frame (t = 1) the prior distributions for skin

and background are considered equiprobable:

π(1)(s) =
1
2

= π(1)(b). (7.3)

For t > 1, the prior skin distribution π(t)(s) at time t is equal to the posterior skin

distribution at time t − 1:

π(t)(s) = p(t−1)(s|xt−1). (7.4)

The likelihood f(xt|s) of pixel x representing skin at time t ≥ 1 is given by:

f(xt|s) =
2∑

i=1

w(t)
si

N(μ(t)
si

, σ2(t)
si

), (7.5)

where the mixture parameters wsi
(weight), μsi

(mean), σ2
si

(variance) : i = 1, 2 and

ws2 = 1−ws1 of the bimodal skin distribution can be initialized and updated using

(a) (b) (c)

Fig. 7.4. Skin and background: (a) selection of samples for EM algorithm. (b) Corresponding

bimodal temperature distribution of background region. (c) Corresponding bimodal tempera-

ture distribution of skin region
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the EM algorithm. For that, we select N representative facial frames (offline) from

a variety of subjects that we call the training set. Then, we manually segment, for

each of the N frames, skin (and background) areas, which yields Ns skin (and Nb

background) pixels as shown in Fig. 7.4a.

To estimate the mixture parameters for the skin, we initially provide the EM

algorithm with some crude estimates of the parameters of interest: ws0 , μs0 , σ
2
s0

.

Then, we apply the following loop for k = 0, 1, . . . :

z
(k)
ij =

w
(k)
si (σ(k)

si )−1exp

{
− 1

2(σ
(k)
si

)2
(xj − μ

(k)
si )2

}
∑2

t=1 w
(k)
st (σ(k)

st )−1exp

{
− 1

2(σ
(k)
st

)2
(xj − μ

(k)
st )2

} ,

w(k+1)
si

=

∑Ns

j=1 z
(k)
ij

Ns
,

μ(k+1)
si

=

∑Ns

j=1 z
(k)
ij xj

Nsw
(k+1)
si

,

(σ(k+1)
si

)2 =

∑Ns

j=1 z
(k)
ij (xj − μ

(k+1)
si )2

Nsw
(k+1)
si

,

where i = 1, 2 and j = 1, . . . , Ns. Then, we set k = k + 1 and repeat the loop. The

condition for terminating the loop is:

|w(k+1)
si

− w(k)
si

| < ε, i = 1, 2. (7.6)

We apply a similar EM process for determining the initial parameters of the

background distributions. Once a data point xt becomes available, we decide that

Fig. 7.5. Segmentation of facial skin region: (a) original thermal facial image. (b) Result of

Bayesian segmentation
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it represents skin if the posterior distribution for the skin p(t)(s|xt) > 0.5 and

that it represents background otherwise. Figure 7.5b depicts the visualization of

Bayesian segmentation on the subject shown in Fig. 7.5a. Part of the subject’s nose

has been erroneously classified as background and a couple of cloth patches from the

subject’s shirt have been erroneously marked as facial skin. This is due to occa-

sional overlapping between portions of the skin and background distributions. The

isolated nature of these mislabeled patches makes them easily correctable through

postprocessing. We apply our three-step postprocessing algorithm on the binary

segmented image. Using foreground (and background) correction, we find the

mislabeled pixels in foreground (and background) and remove them. The specific

algorithm that achieves this is the following:

1. Label all the regions in the foreground and background using a simple flood-fill

or connected component labeling algorithm [208]. Let the foreground

regions be Rf (i), i = 1, . . . , Nf , where Nf represents the number of fore-

ground regions, and let the background regions be Rb(j), j = 1, . . . , Nb, where

Nb represents the number of background regions.

2. Compute the number of pixels in each of the foreground and background

regions. Find the maximum foreground (Rmax
f ) and background (Rmax

b )

areas:

Rmax
f = max{Rf (i), i = 1, . . . , Nf},

Rmax
b = max{Rb(i), i = 1, . . . , Nb}.

3. Change all foreground regions that satisfy the condition Rf (i) < Rmax
f /4 to

background. Similarly, change all background regions that satisfy the condition

Rb(i) < Rmax
b /4 to foreground. We found experimentally that outliers tend

to have an area smaller than one-fourth of the maximum area, and hence can

be corrected with the above conditions. Figure 7.6 shows the result of our post-

processing algorithm.

7.2.2 Segmentation of Superficial Blood Vessels

Once a face is delineated from the rest of the scene, the segmentation of superfi-

cial blood vessels from the facial tissue is carried out in the following two steps

[205, 207]:

1. The image is processed to reduce noise and enhance edges.

2. Morphological operations are applied to localize the superficial vasculature.

In thermal imagery of human tissue the major blood vessels have weak sigmoid

edges, which can be handled effectively using anisotropic diffusion. The anisotropic
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Fig. 7.6. Segmentation of facial skin region: (a) original thermal facial image. (b) Binary

segmented image. (c) Foreground regions each represented in different color. (d) Background

regions each represented in different color. (e) Binary mask after foreground and background

corrections. (f) Final segmentation result after post-processing

diffusion filter is formulated as a process that enhances object boundaries by

performing intra-region as opposed to inter-region smoothing. The mathematical

equation for the process is:

∂I(x̄, t)
∂t

= ∇(c(x̄, t)∇I(x̄, t)). (7.7)
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In our case I(x̄, t) is the thermal infrared image, x̄ refers to the spatial dimen-

sions, and t to time. c(x̄, t) is called the diffusion function. The discrete version of

the anisotropic diffusion filter of (7.7) is as follows:

It+1(x, y) = It +
1
4
∗ [cN,t(x, y)∇IN,t(x, y)

+ cS,t(x, y)∇IS,t(x, y) + cE,t(x, y)∇IE,t(x, y)
+ cW,t(x, y)∇IW,t(x, y)]. (7.8)

The four diffusion coefficients and four gradients in (7.8) correspond to four

directions (i.e., North, South, East and West) with respect to the location (x,y).

Each diffusion coefficient and the corresponding gradient are calculated in the

same manner. For example, the coefficient along the north direction is calculated as

follows:

cN,t(x, y) = exp(
−∇I2

N,t(x, y)
k2

), (7.9)

where IN,t = It(x, y + 1) − It(x, y).
Image morphology is then applied on the diffused image to extract the blood

vessels that are at a relatively low contrast compared to that of the surrounding

tissue. We employ for this purpose a top-hat segmentation method, which is a

combination of erosion and dilation operations. Top-hat segmentation takes two

forms. First form is the white top-hat segmentation that enhances the bright

objects in the image, while the second one is the black top-hat segmentation that

enhances dark objects. In our case, we are interested in the white top-hat

segmentation because it helps with enhancing the bright (“hot”) ridge like structures

corresponding to the blood vessels. In this method the original image is first opened

and then this opened image is subtracted from the original image as follows:

Iopen = (I � S) ⊕ S,

Itop = I − Iopen, (7.10)

where I , Iopen, Itop are the original, opened, and white top-hat segmented images,

respectively, S is the structuring element, and �, ⊕ are morphological erosion

and dilation operations, respectively. Figure 7.7a depicts the result of applying

Fig. 7.7. Vascular network extraction: (a) original segmented image. (b) Anisotropically

diffused image. (c) Blood vessels extracted using white top-hat segmentation
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anisotropic diffusion to the segmented facial tissue shown in Fig. 7.4b, and the

Fig. 7.7b shows the corresponding blood vessels extracted using white top-hat

segmentation.

7.2.3 Extraction of TMPs

The extracted blood vessels exhibit different contour shapes between subjects. We

call the branching points of the blood vessels TMPs. TMPs can be extracted from the

blood vessel network in ways similar to those used for fingerprint minutia extraction.

A number of methods have been proposed [209] for robust and efficient extraction

of minutia from fingerprint images. Most of these approaches describe each minutia

point by at least three attributes, including its type, its location in the fingerprint

image, and the local vessel orientation. We adopt a similar approach for extracting

TMPs from vascular networks, which is outlined in the following steps:

1. The local orientation of the vascular network is estimated.

2. The vascular network is skeletonized.

3. The TMPs are extracted from the thinned vascular network.

4. The spurious TMPs are removed.

Local orientation Ψ(x, y) is the angle formed at (x, y) between the blood vessel

and the horizontal axis. Estimating the orientation field at each pixel provides the

basis for capturing the overall pattern of the vascular network. We use the approach

proposed in [210] for computing the orientation image because it provides pixel-

wise accuracy.

Next, the vascular network is thinned to one-pixel thickness [211]. Each pixel

in the thinned map contains a value of 1 if it is on the vessel and 0 if it is not. Con-

sidering eight-neighbourhood (N0, N1, . . . , N7) around each pixel, a pixel (x, y)
represents a TMP if (

∑7
i=0 Ni) > 2 (see Fig. 7.8).

Fig. 7.8. Thermal Minutia Point (TMP) extracted from the thinned vascular network
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Fig. 7.9. Spurious TMPs: (a) clustered TMPs. (b) Spike formed due to a short branch

It is desirable that the TMP extraction algorithm does not leave any spuri-

ous TMPs since this will adversely affect the matching performance. Removal of

clustered TMPs (see Fig. 7.9a) and spikes (see Fig. 7.9b) helps to reduce the num-

ber of spurious TMPs in the thinned vascular network.

The vascular network of a typical facial image contains around 50–80 genuine

TMPs whose location (x, y) and orientation (Ψ ) are stored in the database.

Figure 7.10 shows the results of each stage of the feature extraction algorithm on

a thermal facial image.

7.2.4 Matching of TMPs

Numerous methods have been proposed for matching fingerprint minutiae, most of

which try to simulate the way forensic experts compare fingerprints [209]. Popular

techniques are alignment-based point pattern matching, local structure matching,

and global structure matching. Local minutiae matching algorithms are fast, simple,

and more tolerant to distortions. Global minutiae matching algorithms feature high

distinctiveness. A few hybrid approaches [212, 213] have been proposed where the

advantages of both local and global methods are exploited. We use a hybrid method

[212] to perform TMP matching.

For each TMP M(xi, yi, Ψi) that is extracted from the vascular network, we

consider its N nearest-neighbour TMPs M(xn, yn, Ψn), n = 1, . . . , N . Then, the

TMP M(xi, yi, Ψi) can be defined by a new feature vector:

LM = {{d1, ϕ1, ϑ1}, {d2, ϕ2, ϑ2}, . . . , {dN , ϕN , ϑN}, Ψi} (7.11)

where

dn =
√

(xn − xi)2 + (yn − yi)2

ϕn = diff(Ψn, Ψi), n = 1, 2, . . . , N

ϑn = diff

(
arctan

(
yn − yi

xn − xi

)
, Ψi

)
(7.12)
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Fig. 7.10. Visualization of the various stages of the feature extraction algorithm: (a) a typ-

ical thermal facial image. (b) Facial tissue delineated from the background. (c) Vascular

network extracted from thermal facial image. (d) Thinned vessel map. (e) Extracted TMPs

from branching points. (f) Spurious TMPs removed

The function diff() calculates the difference of two angles and scales the result

within the range [0, 2π) [213]. Given a test image It, the feature vector of each of

its TMP is compared with the feature vector of each TMP of a database image. Two

TMPs M and M ′ are marked to be a matched pair if the absolute difference between

corresponding features is less than specific threshold values {δd, δϕ, δϑ, δΨ}. The

threshold values should be chosen in such a way that they accommodate linear
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deformations and translations. The final matching score between the test image and

a database image is given by:

Score =
NUMmatch

max(NUMtest, NUMdatabase)
(7.13)

where NUMmatch represents number of matched TMP pairs, and NUMtest,

NUMdatabase represent number of TMPs in test and database images, respectively.

7.3 PCA-Based Feature Extraction from Visual Images

Principal component analysis (PCA) is a well known approach for dimensionality

reduction of the feature space. It has been successfully applied in face recognition

[189, 214]. The main idea is to decompose face images into a small set of feature

images called eigenfaces, which can be considered as points in a linear subspace

called “face space” or “eigenspace”. Recognition is performed by projecting a new

face image into this eigenspace and then comparing its position with those of known

faces.

Suppose a face image consists of N pixels, so it can be represented by a vector

Γ of dimension N . Let {Γi|i = 1, . . . , M} be the training set of face images. The

average face of these M images is given by

Ψ =
1
M

M∑
i=1

Γi. (7.14)

Then, each face Γi differs from the average face Ψ by Φi:

Φi = Γi − Ψ ; i = 1, . . . , M. (7.15)

A covariance matrix of the training images can be constructed as follows:

C = AAT , (7.16)

where A = [Φ1, . . . , ΦM ]. The top M ′ eigenvectors U = [u1, . . . , uM ′ ] of the

covariance matrix A, called eigenfaces, constitute the eiganspace. Figure 7.11 shows

the top six eigenfaces extracted from our training set in decreasing order. Given a

test image, Γtest, it is projected to the eigenspace and an Ωtest vector is obtained as

follows:

Ωtest = UT (Γtest − Ψ). (7.17)

The distances between this vector and the projected vectors from the training images

are used as a measure to find the best match in the database. Any standard distance

measure such as Euclidean distance, Mahalanobis distance, or MahCosine measure

can be used to compare the vectors [197].
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Fig. 7.11. Eigenfaces extracted from our training set that correspond to decreasing order of

eigenvalues

7.4 Experimental Results and Discussion

We used the Equinox Corporation’s database in our experiments. It is a large data-

base of both infrared (short-, mid-, and long-wave) and visual band images available

for public download at http://www.equinoxsensors.com/products/HID.html. Image

frame sequences were acquired at 10 frames s−1 while the subject was reciting the

vowel sequence “a,e,i,o,u”. The database also consists of subject images wearing

glasses and with expressions of happiness, anger and surprise, which were used

to account for variation in poses. In order to induce variability in visual band im-

ages, three different illumination conditions were used during acquisition – frontal,

frontal-left, and frontal-right. For each subject in the database subset we used,

images were acquired simultaneously from visual and mid-wave infrared cameras.

We used a total of 4,552 co-registered visual and mid-wave infrared images

for our experiments, which comprised of 45 different subjects. For each subject,

we used three training images (one per each illumination condition). If the subject

was wearing glasses, we included images with and without glasses in the training

set. Figure 7.12 shows the training examples of two subjects from the database.

For each test image, we applied the physiological face recognition algorithm on

the thermal image and the PCA algorithm on its visual counterpart. Finally, we

applied decision fusion by combining the scores from the visual and thermal infrared

recognition algorithms. Specifically, the fusion was performed by combining the

individual scores from each of the algorithms. We found from our experiments that

the physiological algorithm on thermal images performed slightly better than the

PCA algorithm on visual imagery. The rank 1 recognition rate for thermal images

was 97.74%, whereas that of visible images was 96.19%. Since the mismatches in

each of these experiments were disjoint, fusion yielded an increase in performance



104 P. Buddharaju and I. Pavlidis

Fig. 7.12. Sample training images of two subjects (one subject per row) in the database

Fig. 7.13. CMC curves of the visual, thermal and fusion face recognition algorithms

with a rank 1 recognition rate of 98.79%. Figure 7.13 shows the CMC curves for the

visual, thermal and fusion algorithms.

We noticed that the recognition performance from the physiological algorithm

on thermal images can be improved by estimating and eliminating the incorrect

TMPs as well as non-linear deformations in the extracted vascular network caused

due to large facial expressions and non-linear pose transformations. Figure 7.14

shows an example of non-linear deformations caused in the vascular network

between gallery and probe images of the same subject due to pose and facial expres-

sion changes. Even though the matching algorithm described in Sect. 7.2.4 works

fine with linear transformations in the vascular network, it affords small latitude in

the case of non-linear transformations. Our future work is directed towards address-

ing this issue.
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Fig. 7.14. (a) Training image and (b) corresponding vascular network (overlaid over the

segmented image). (c) Test image of same subject exhibiting large facial expression and

(d) corresponding vascular network (overlaid over the segmented image)

There are two major operational limitations in the current physiological feature

extraction method:

1. Glasses are opaque in the thermal infrared spectrum and hence block important

vascular information around eyes. Also, facial hair curtails the radiation emitted

from the covered surface of the skin, and may cause facial segmentation to break

down. Figure 7.15 shows examples of failed face segmentation when glasses

and facial hair are present.

2. The robustness of the method degrades when there is substantial perspiration.

This results in a highly non-linear shift of the thermal map that alters radically

the radiation profile of the face. A practical scenario where such a case may

arise is when a subject is imaged after a strenuous exercise that lasted several

minutes. Another such scenario may arise when a heavily dressed subject is

imaged in a very hot environment.

We have performed an experiment whereby a subject is imaged at the following

instances:

– In a baseline condition (Fig. 7.16, image 1a)

– After 1 min of rigorous walking (Fig. 7.16, image 2a)
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Fig. 7.15. (a) Thermal facial image with glasses and (b) result of segmentation. (c) Thermal

facial image with facial hair and glasses and (d) result of segmentation

– After 5 min of rigorous walking (Fig. 7.16, image 3a)

– After 5 min of rigorous jogging (Fig. 7.16, image 4a)

Column b of Fig. 7.16 shows the corresponding vessel extraction results. In the

case of image 2a, the metabolic rate of the subject shifted to higher gear, but

perspiration is still not a major problem. One can find evidence of the higher

metabolic rate by looking at the left temporal area, where the region around the

rich vasculature has become deeper cyan (hotter) in image 2a with respect to

image 1a. This is an example of a positive linear shift (warming up), which the

vessel extraction algorithm handles quite well (see image 2b versus image 1b).

As the exercise become more strenuous and lasts longer, perspiration increases

and introduces a negative non-linear shift (cooling down) in the thermal map.

This is especially pronounced in the forehead where most of the perspiration

pores are. Due to this, some unwanted noise starts creeping in image 3b, which

becomes more dramatic in image 4b. The performance of the vessel extraction

algorithm deteriorates but not uniformly. For example, the vessel extraction al-

gorithm continues to perform quite well in the cheeks where perspiration pores
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Fig. 7.16. Effect of perspiration on feature extraction. Thermal facial image of a subject

(1a) at rest, (2a) after 1 min of rigorous walking (3a) after 5 min of rigorous walking,

(4a) after 5 min of rigorous jogging, and (1b,2b,3b,4b) corresponding vascular network

maps, and (c) colour map used to visualize temperature values

are sparse and the cooling down effect is not heavily non-linear. In contrast,

performance is a lot worse in the forehead area, where some spurious vessel

contours are introduced due to severe non-linearity in the thermal map shift.
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7.5 Conclusions

We have outlined a novel multi-spectral approach to the problem of face recog-

nition by the fusion of thermal infrared and visual band images. The cornerstone

of the approach is the use of unique and time invariant physiological information

as feature space for recognition in thermal imagery. The facial tissue is first sep-

arated from the background using a Bayesian segmentation method. The vascular

network on the surface of the skin is then extracted based on a white top-hat seg-

mentation preceded by anisotropic diffusion. TMPs are extracted from the vascular

network and are used as features for matching test to database images. The method

although young, performed well on a nontrivial database. We also applied a PCA-

based (eigenface) recognition approach on concomitant visual imagery. We have

shown that the recognition performance in the thermal domain is slightly better than

the visual domain, and that fusion of the two modalities/methodologies is better than

either one of them. In a nutshell, this research demonstrated that standard visual face

recognition methods can gain in performance if they are combined with physiolog-

ical information, uniquely extracted in thermal infrared. The most notable outcome

besides performance increase is the striking complimentarily of the two modali-

ties/methodolgogies as it is revealed in the experimental results. It is the latter that

renders fusion a natural strategy that fits the problem.



8 Feature Selection for Improved Face Recognition
in Multisensor Images

Satyanadh Gundimada and Vijayan Asari

8.1 Introduction

This chapter discusses the problems faced by present day face recognition sys-

tems in the presence of extreme variations. Even though face recognition technol-

ogy [215] has progressed from linear subspace methods [216] such as eigenfaces

and fisher faces [217–219] to nonlinear methods such as KPCA, KFD [220–223],

many of the problems are yet to be addressed completely. In addition to challenges

such as expression and pose variations, partial occlusions, the face recognition tech-

niques face a major bottle neck in the form of illumination variation. The chapter

addresses the problems of expression variations and partial occlusions by presenting

a novel feature selection strategy. The illumination variations are tackled by consid-

ering images from multiple sensors.

8.1.1 Sensors and Systems

Recently images from multiple sensors are being utilized for the purpose of obtain-

ing complementary information. Face recognition is one of the applications which

can benefit from using multiple sensors. Visual sensors cannot capture enough

information for precise face recognition in low to very low illumination conditions.

Here, the Long wave infrared image sensor comes into the picture. The infrared

sensors capture the amount of heat generated from the objects in the scene and not

the light reflected from those objects. Hence this could help in dealing with extreme

illumination conditions. Despite its robustness to illumination changes, however, IR

imagery has several drawbacks including that it is sensitive to temperature changes

in the surrounding environment, variations in the heat patterns of the face and its

is opaque to glass. In contrast to IR imagery, visible imagery is more robust to the

above factors but as said earlier, very sensitive to illumination changes.

8.1.2 Related Work

While the nature of face imagery in the visible domain is well-studied, particularly

with respect to illumination dependence, its thermal counterpart has received less

attention. Previous studies have shown that infra red imagery offers a promising

alternative to visible imagery for handling variations in face appearance due to illu-

mination changes more successfully. But it is also interesting to observe that, face
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recognition on thermal images in [224] degrades more sharply than with visible

images when probe and gallery are chosen from different sessions. Results in [224]

indicate better performances obtained with visible imagery indoors under controlled

lighting conditions. But outdoors the thermal image based face recognition system

outperformed the visible imagery based one. Also the thermal face recognition

results for both indoor and outdoor environments are comparatively less different

from each other, thus reiterating that the illumination has little effect on thermal

imagery. The conclusion of the studies in [224–226] is that despite the degraded

thermal recognition performance, fusion of both visible and thermal modalities

yields better overall performance. Most of the studies that were conducted on ther-

mal image face recognition relied on conventional eigenfaces approach. This was

particularly relevant for us because, in [224] it can be noticed that while multises-

sion thermal face recognition under controlled indoor illumination was statistically

poorer than visible recognition with two standard algorithms, significance was sub-

stantially reduced with an algorithm [224] more specifically tuned to thermal im-

agery. This suggests that previous results reported on thermal face recognition may

be incomplete. Hence building of effective algorithms to fuse information from both

spectra has the potential to improve face recognition performance. It is possible to

realize sensor fusion on different levels: sensor data level fusion, feature vector level

fusion, and decision level fusion. In [224] it is consider that fusion on the decision

level has more potential applications.

8.1.3 Proposed Methodologies

In addition to multisensor fusion, a novel feature selection strategy is implemented

to overcome the above mentioned challenges faced by real time face recognition

techniques such as partial occlusions and facial expressions along with illumination

variations. Phase congruency based features are used for the purpose. Unlike the

edge detectors, which identify the sharp changes in intensity, the phase congruency

model detects points of order in the phase spectrum. There is also physiological

evidence, indicating that human visual system responds strongly to the points in

an image where the phase information is highly ordered. Phase congruency provides

a measure that is independent of the overall magnitude of the signal making it

invariant to variations in image illumination and/or contrast. Hence phase congru-

ency image maps are used instead of raw intensity images. The facial variations

in real world scenario are confined to local regions. Considering additional pixel

dependencies across various subregions could help in providing additional informa-

tion, which in turn could help in improving the classification accuracy. A feature

selection policy based on the above discussion in which modular spaces are created

with pixels from across various local regions taking into account the locality of such

regions is implemented in this chapter. Experiments were conducted on individ-

ual and fusion modalities using the proposed face recognition. Both data level and

decision level fusion are carried out. Experimental results indicate that the feature

selection strategy implemented along with eigen spaces concept resulted in high

accuracy compared to raw intensity images for all modalities. It is also observed
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that recognition accuracy in the case of raw or intensity images is higher for data

level fusion compared to all other modalities, where as the application of the pro-

posed face recognition technique provided better accuracy results for decision level

fusion.

8.1.4 Organization of the Chapter

The third section explains the need for a proper feature selection strategy and also

describes the proposed phase congruency, neighbor hood defined feature selection

processes. Section four explains the proposed feature selection strategy. Section five

describes the types of fusion techniques that are implemented and section six gives

a detailed explanation of the experimental setup and the results obtained. Also a

discussion of the results obtained is provided in the same section. Section seven

provides the conclusion.

8.2 Phase Congruency Features

Gradient-based operators, which look for points of maximum intensity gradient,

will fail to correctly detect and localize a large proportion of features within

images. Unlike the edge detectors, which identify the sharp changes in intensity, the

phase congruency model detects points of order in the phase spectrum. According

to Opeinheim and Lim [227], phase component is more important than the magni-

tude component in the reconstruction process of an image from its Fourier domain.

There is also physiological evidence, indicating that human visual system responds

strongly to the points in an image where the phase information is highly ordered.

Phase congruency provides a measure that is independent of the overall magnitude

of the signal making it invariant to variations in image illumination and/or contrast.

Figure 8.1 shows phase congruency image and the corresponding intensity image.

The phase congruency technique used in this chapter is based on the one developed

by Peter Kovesi [228]. Phase congruency function in terms of the Fourier series

expansion of a signal at some location x is given by

PC(x) =

∑
n

An cos(φn(x) − φ(x))∑
n

An
(8.1)

Fig. 8.1. Phase congruency map obtained from the corresponding intensity image



112 S. Gundimada and V. Asari

where An represents the amplitude of the nth Fourier component, and φn(x) rep-

resent the local phase of the Fourier component at position x. φ(x) is the weighted

mean of all the frequency components at x. Phase congruency can be approximated

to finding where the weighted variance of local phase angles relative to the weighted

average local phase, is minimum. An alternative and easier interpretation of phase

congruency is proposed in [229]. It is proposed that energy is equal to phase con-

gruency scaled by the sum of the Fourier amplitudes as shown in

E(x) = PC(x)
∑

n

An (8.2)

Hence phase congruency is stated as the ratio of E(x) to the overall path length

taken by the local Fourier components in reaching the end point. This makes the

phase congruency independent of the overall magnitude of the signal. This provides

invariance to variations in image illumination and contrast. E(x) can be expressed

as E(x) =
√

F (x)2 + H(x)2.

If I(x) is the input signal then F (x) is the signal with its DC component

removed and H(x) is the Hilbert transform of F (x) which is a 900 phase shift

of F (x). Approximations to the components F (x) and H(x) are obtained by con-

volving the signal with a quadrature pair of filters. In order to calculate the local fre-

quency and phase information in the signal, logarithmic Gabor functions are used.

If I(x) is the signal and Me
n and Mo

n denote the even symmetric and odd-symmetric

wavelets at a scale n. The amplitude and phase of the transform at a given wavelet

scale is given by

An =
√

en(x)2 + on(x)2 (8.3)

φn = tan−1 (on(x)/en(x)) (8.4)

where en(x) and on(x) are the responses of each quadrature pair of filters. Equa-

tion (5) illustrates the response vector.

[en(x), on(x)] = [I(x) ∗ Me
n, I(x) ∗ Mo

n] (8.5)

F (x) and H(x) can be obtained from

F (x) =
∑

n

en(x) (8.6)

H(x) =
∑

n

on(x) (8.7)

If all the Fourier amplitudes at x are very small then the problem of phase congru-

ency becomes ill conditioned. To overcome the problem a small positive constant ε
is added to the denominator. The final phase congruency equation is given by

PC(x) =
E(x)

ε +
∑
n

An
(8.8)

One-dimensional analysis is carried out over several orientations, and the results

are combined to analyze a two-dimensional signal (image) [228].
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8.3 Feature Selection

Facial variations are confined mostly to local regions in reality. Modularizing the

images would help in localizing these variations, provided the modules created are

sufficiently small. But in doing so, large amount of dependencies among various

neighboring pixels are ignored. This can be countered by making the modules larger,

but this will result in improper localization of the facial variations. In order to deal

with this problem, a novel module creation strategy is implemented in this chap-

ter. It has been proved that, dividing an image of size 64×64 into regions of size

8×8 pixels is appropriate in achieving high classification accuracy [230]. The train-

ing phase of the proposed face recognition technique is illustrated in Fig. 8.2. Each

image under consideration is divided into small nonoverlapping subregions of size

4×8 pixels. Two of such 4×8 pixel regions from a predefined region (neighborhood)

Input Images

Phase
Congruency

Feature Extraction

Region
segmentation

Neighborhood
defined module

creation

Modular Eigen
spaces creation

Fig. 8.2. Block diagram illustrating the training phase of the proposed face recognition

technique
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Fig. 8.3. Figure illustrates the creation of modules of size 8×8 by combining blocks of 4×8

pixels from within a neighborhood of 16×16 pixels

within the image can be combined to form a 8×8 pixel region or module. Figure 8.3

illustrates the process of obtaining such regions from each of 16×16 pixels. Twenty-

eight such different 8×8 modules can be created (all the combinations). A total of

448 modules are created from a 64×64 face image. By following the above proce-

dure, 448 modules of each image are produced. Eigenspaces are created for each

such module. The same procedure of module creation is followed for the probe im-

age, that is, each module is projected onto the corresponding eigenspace and clas-

sified according to minimum distance measure. A voting procedure determines the

result of the overall classification by considering the individual classification results

of all the 448 modules.

8.4 Image Fusion

Image fusion is the process by which two or more images obtained from multiple

sensors are combined into a single image, retaining the important features from each

of the original images. The most easy and basic image fusion technique is average

of the two images. The most popular image fusion algorithm is the one based on

the discrete wavelet transform [231]. The wavelet transform of an image provides

multistage pyramid decomposition for the image. This decomposition will typically

have several stages. There are four frequency bands after each decomposition. These

are the low–low, low–high, high–low, and high–high bands. The next stage of the

decomposition process operates only on the low–low part of the previous result. This

produces a pyramidal hierarchy. We can think of the low–low band as the low pass

filtered and subsampled source image. All the other bands which are called high

frequency bands contain transform coefficients that reflect the differences between

neighboring pixels. The absolute values of the high frequency coefficients repre-

sent the intensity of brightness fluctuation of the image at a given scale. The larger

values imply more distinct brightness changes which typically correspond to the

salient features of objects. Thus, a simple fusion rule is to select the larger absolute

value of the two corresponding wavelet coefficients from each of the two source

images. There are several other fusion rules [226] that can be implemented. The

fusion techniques described above are implemented before any further processing

is done. Hence these techniques are called data level or image level fusion. Another

type of fusion is to fuse the information that is obtained after certain processing is
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Sensor1 
data

Decision
map

Fused wavelet
coefficient map

Multi-sensor
fusion image

Sensor2 
data

Image
registration

DWT

DWT

Fig. 8.4. Multisensor image fusion using discrete wavelet transform. The two sensors are

visual and thermal sensors, respectively

performed. This type of fusion is called decision level fusion. Both data level and

decision level fusion techniques are implemented and evaluated in this paper.

8.4.1 Data Level Fusion

For data level fusion, we implemented a DWT based technique, with a fusion rule

that selects coefficients with maximum magnitude. The obtained wavelet feature

map is then used to get a fused image by using inverse wavelet transform. The block

diagram shown in Fig. 8.4 illustrates the fusion technique.

8.4.2 Decision Level Fusion

Both visual and thermal images are subjected to phase congruency feature extrac-

tion and module creation separately. There are a total of 896 modules created, 448

from visual image and 448 from thermal image. Each module is now classified

individually after projecting onto the corresponding eigenspace. A voting procedure

is now used to classify based on the individual classification results of all the 896

modules. The procedure of concatenating the modules and then classification can be

interpreted as decision level fusion. This process is further illustrated in Fig. 8.5.

8.5 Experimental Results

There are two parts in the experimentation. One is to prove that the feature selec-

tion process works in the presence of partial occlusions and facial expressions. As

the databases with thermal face images with extreme variations are not yet avail-

able, the testing of the face recognition techniques is carried out on AR database

which has only visual images. From the AR database 40 individuals are chosen

randomly to create a test database. Thirteen images of each individual are present

in the database. Three images of each individual are used in training the proposed
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Fig. 8.5. Figure illustrates the concept of decision level fusion. The overall classification is

based on the number of modules obtained in favor of each class

Fig. 8.6. The three images of each individual in AR database that are used for training

technique for classification. Figure 8.6 shows the training images of an individual. It

can be observed that all the three face images are fairly neutral with little expression

variations. The rest of the ten images of each individual in the database are used

for testing the proposed technique. The sample test images are shown in Fig. 8.7.

The test images are affected due to lighting or (and) expressions or (and) partial

occlusions. The graph in Fig. 8.8 illustrates the relationship between percentage of
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Fig. 8.7. Sample test images of the same person shown in Fig. 8.6

accuracy and the dimensionality of the subspace for various methods such as prin-

cipal component analysis on holistic faces (PCA), modular PCA (MPCA), principal

component analysis on phase congruency features (PPCA), modular subspace ap-

proach on phase congruency features (MPPCA) and the proposed method of neigh-

borhood defined module selection on phase congruency features in PCA domain

(NPPCA). It can be observed that the use of phase congruency features improves

the face recognition accuracy significantly. Also modular subspaces improve the

recognition for both intensity and phase congruency features. It can be observed

that accuracy has risen by about 10% in the case of NPPCA compared to MPPCA.

The second phase of experimentation is carried out to evaluate the performance

of the proposed face recognition technique on fusion of multisensor images, at data

level and decision level. Equinox face database which consists of both long wave

infra red and visual face images is used for this purpose. A subset of 34 individuals

is selected for the experiments. Each individual has a total of 15 images. The thermal

and visual images present in this database are preregistered. Instead of cropping the

faces manually, a face detection system developed by Viola Jones is used to obtain

face images to depict the real-time scenario. This face detection system is used to

segment the face part from the background in each image. The corresponding region
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Fig. 8.8. Accuracies of various methods with respect to increase in dimensionality of the

subspace are illustrated

in the thermal images is also segmented based on the coordinates of the detected

faces in the visual images. Samples images can be seen in Fig. 8.9.

Four face images of each individual are selected randomly and used for training

and the rest of the 11 images are used for testing. The experimentation process

is divided into two parts. In the first part the proposed neighborhood defined face

recognition technique is carried out on raw intensity images. It is observed that the

recognition accuracy has improved very much on fused images when compared to

either thermal or visual alone. The data level fusion provided better results than

the decision level fusion method. In the second case, the proposed face recognition

technique is applied on the phase congruency maps. The procedure is carried out on

all the three modalities, that is on thermal, visual and fused. It is observed that the

recognition accuracy has improved when compared to the corresponding modality

in the first stage. Figure 8.10 shows graphs illustrating the improvement in accuracy

due to the proposed face recognition technique. A significant result shown that can

be observed is that the decision level fusion provided better accuracy by 2% in the

case of phase congruency maps.
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Fig. 8.9. Figure shows visual, thermal and the corresponding fused sample face images in the

Equinox face database

Fig. 8.10. Accuracies of various methods with respect to increase in dimensionality of the

subspace
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8.6 Conclusion

A novel feature selection policy has been implemented and tested on individual as

well as fused modalities. The face recognition technique proposed, indeed provided

better accuracy results, in each case. It was observed that, data level fusion is better

in the case of raw intensity images where as the decision level fusion outperforms

the former in the case of phase congruency images. The experimental results pro-

vided in the chapter indicate that multisensor image fusion along with proper feature

selection strategy does improve the recognition accuracy to a great extent, especially

in the presence of facial variations.
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9 Multimodal Face and Speaker Identification
for Mobile Devices
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9.1 Introduction

In this chapter we discuss the application of two biometric techniques, face and

speaker identification, for use on mobile devices. This research has been spurred by

the proliferation of commercially available handheld computers. Because of their

mobility and increasing computational power, these devices are fast becoming a

pervasive part of our lifestyle. Even formerly specialized devices, such as cellular

telephones, now offer a range of capabilities beyond simple voice transmission, such

as the ability to take, transmit and display digital images. As these devices become

more ubiquitous and their range of applications increases, the need for security also

increases. To prevent impostor users from gaining access to sensitive information,

stored either locally on a device or on the device’s network, security measures must

be incorporated into these devices. Face and speaker verification are two techniques

that can be used in place of, or in conjunction with, preexisting security measures

such as personal identification numbers or passwords.

Handheld devices offer two distinct challenges for standard face and voice iden-

tification approaches. First, their mobility ensures that the environmental conditions

the devices will experience will be highly variable. Specifically, the audio captured

by these devices can contain highly variable background noises producing poten-

tially low signal-to-noise ratios. Similarly, the images captured by the devices can

contain highly variable lighting and background conditions. Second, the quality of

the video and audio capture devices is also a factor. Typical consumer products are

constrained to use audio/visual components that are both small and inexpensive,

resulting in a lower quality audio and video than is typically used in laboratory

experiments.

To examine these issues we have developed a system that combines two biomet-

ric techniques, speaker identification and face identification, for use with a mobile

device. We provide a high level overview of our speaker and face identification tech-

nologies in Sect. 9.2. Following the description of these technologies, the chapter

will focus on the following three research questions:

1. How much improvement in speaker identification performance can be gained

by combining the audio and visual biometric information?

2. Can full video information allow for more accurate face identification than sin-

gle image snapshots?
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3. How can speaker identification systems be made more robust to variable envi-

ronments?

To answer question 1, it has been found that combining speaker and face identifi-

cation technologies can have a dramatic effect on person identification performance.

In one set of experiments, discussed in Sect. 9.3, a 90% reduction in equal error rate

in a user verification system was achieved when integrating the face and speaker

identification systems.

The answer to question 2 is still largely open for debate. However, in preliminary

experiments examining the use of static and dynamic information extracted from

video, it was found that dynamic information about lip movement made during the

production of speech can be used to complement information from static lip images

in order to improve person identification. These results are discussed in Sect. 9.4.

To answer question 3, degradation in speaker identification rates in noisy condi-

tions can be mitigated through the use of noise compensation techniques and/or

missing feature theory. Noise compensation involves the adjustment of acoustic

models of speech to account for the presence of previously unseen noise condi-

tions in the input signal. Missing feature theory provides a mechanism for ignoring

portions of a signal that are so severely corrupted as to become effectively unus-

able. In Sect. 9.5 we examine the use of two techniques for noise robust speaker

identification, the posterior union model (PUM) for handling missing features and

universal compensation.

9.2 Person Identification Technologies

9.2.1 Speaker Identification

Speech has long been recognized as a reasonable biometric for person identifica-

tion. However, speech is a variable signal whose main purpose is not to specify

a person’s identity but rather to encode a linguistic message. In systems where

the linguistic content of the speech is unknown (e.g., for surveillance tasks), text-

independent speaker identification systems are generally used. It has been found

for many text-independent applications that, even when linguistic knowledge is

ignored completely, accurate speaker identification based purely on acoustic infor-

mation can be performed. The standard approach is to extract wide-band spectral

feature vectors from the audio signal (in the form of mel-scale cepstral coefficients

or MFCCs [232]) at a fixed interval (typically every 10 ms). The full collection of

acoustic features from all utterances in an individual’s training set are then pooled

together and modeled with a single probability density function constructed from a

Gaussian mixture model (GMM). Speaker identification is performed by scoring the

MFCC feature vectors against the GMMs of enrolled speakers to generate likelihood

scores for these speakers [233].

For the problem of speaker verification (i.e., verifying with a yes or no decision

whether a user is who they claim to be), speaker likelihood scores are typically
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normalized by a universal background model which captures the general distribution

of speech over all users. Mathematically, the GMM speaker verification score for

a set of acoustic feature vectors x1 through xN for purported user S is modeled

probabilistically as follows:
N∑

i=1

log
p(xi|S)
p(xi)

(9.1)

Here, p(xi) represents the GMM for the universal background model.

Text-independent systems have proven to work well for some applications.

However, when the linguistic content of the message is known text-dependent

speaker recognition systems generally perform better. This is because text-dependent

systems can tightly model the characteristics of the specific phonetic content con-

tained in the speech signal. In security applications, where the user is cooperative in

the attempt to prove his/her identity, the linguistic content of the speech message is

typically prespecified and can be tightly constrained. In this case, a text-dependent

system is preferred.

In our work, we have developed a speaker identification system that uses

speaker-dependent speech recognition models to perform the speaker identification

process [234, 235]. During training, phonetically transcribed enrollment utterances

are used to train context-dependent acoustic–phonetic models for each speaker.

During testing, a speaker-independent automatic speech recognition system hypoth-

esizes a phonetic transcription for the test utterance. This transcription is then used

by the system to score each segment of speech against each speaker-dependent

acoustic–phonetic model. Modeling speakers at the phonetic level can be problem-

atic because enrollment data sets are typically too small to build robust speaker-

dependent models for every context-dependent phonetic model. To compensate

for this difficulty, an adaptive scoring approach can be used in which the spe-

cific acoustic–phonetic models for a speaker can be interpolated with the speaker’s

text-independent GMM model. This improves the robustness of the approach when

limited enrollment data are available. Mathematically, the speaker score for our pho-

netic approach is modeled probabilistically as follows:

N∑
i=1

log
(

λi
p(xi|ui, S)
p(xi|ui)

+ (1 − λi)
p(xi|S)
p(xi)

)
(9.2)

Here, a phonetic label ui is provided from a speech recognition engine for each

acoustic feature vector xi. The interpolation factor λi is determined separately for

each phonetic unit ui based on the number of times it appeared in the enrollment

data

λi =
count(ui)

count(ui) + K
(9.3)

Here K is a predetermined constant (typically 5 in our systems). The interpolation

factor prefers the context-dependent model ratio for phone ui when that phone has

been observed often in the enrollment data, but it backs off toward the global GMM

approach if ui is rarely or never seen in the enrollment data.
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9.2.2 Face Identification

Identifying people from images of their face is a widely studied problem. In addition

to discussion of this topic in other chapters of this book, a thorough review of the

literature on this topic is available in [236]. In this chapter, we discuss only the

technologies used in our experiments. The primary face identification framework

used in our work is largely based on work originally presented in [237].

Face Detection

Before face identification techniques are applied, the face must first be detected and

located within a given image. The Viola–Jones face detection algorithm (which is

based on a boosted cascade of feature classifiers) is a commonly used approach

which we have used as our baseline face detection algorithm [238].

As an alternative, we have also used a fast hierarchical classifier to roughly

localize the face in the image [239]. The region around the face is then cropped

out from the larger image, histogram equalized, and scaled to a fixed size. Next, a

component-based face detector [237] is applied to the extracted region to precisely

localize the face and to detect facial components. This method first independently

applies component detection classifiers to the face image. Each of these classifiers is

trained to detect a particular component, such as a nose, mouth, or left eyebrow. In

all, 14 face components are used, and each component classifier is evaluated over a

range of positions in the vicinity of the expected location of the desired component.

A geometrical configuration classifier is then applied to the combined output of

each of the 14 component classifiers from each candidate position. The candidate

positions that yield the highest output of the second-level classifier are taken to be

the detected component positions. Figure 9.1 illustrates an enrollment image, as well

as its selected face region with the positions of the facial components as detected by

our system.

Fig. 9.1. A sample image and its face detection result with the face component regions

superimposed
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SVM-Based Face Recognition

A common approach to visual feature extraction for face identification is to use an

appearance-based approach in which the raw image pixels are either used directly

or projected into a lower-dimension subspace. Large dimension feature vectors can

only be used with classification methods which exhibit robustness to the curse of
dimensionality, e.g., support vector machines (SVMs) [240]. We have used SVMs

as the primary classification technique for face identification in our systems.

In our initial work, presented in [241], we used a full face image compressed

to 40× 40 gray-scale pixels and histogram normalized to adjust the brightness. Im-

proved results were later obtained by extracting appearance-based features from 10

of the 14 component regions found during the face detection process [242]. The ten

selected components are similarly scaled in size and normalized, and then combined

into a single feature vector which serves as input to the face recognition component.

For face recognition, a one-vs.-all SVM classification scheme is used, where one

classifier is trained to distinguish each person in the database from all the others. In

the training process, the feature vectors corresponding to a person’s training images

are used as positive examples for the classifier, and the feature vectors extracted

from images of all other users are used as negative examples. The SVM-training

process finds the optimal hyperplane in the feature space that separates the positive

and negative data points. Since the training data may not be separable, a mapping

function corresponding to a second-order polynomial SVM kernel function is ap-

plied to the data before training.

The runtime verification process consists of computing the output score for the

purported user’s SVM classifier [240]. The scores are zero-centered. In other words,

a score of zero means the data point lies directly on the decision hyperplane, and

positive and negative scores mean the data point lies on the positive and negative

example side of the decision hyperplane, respectively. The absolute value of the

SVM output is a multiple of the distance from the decision hyperplane, and could

be normalized to produce the distance. Thus, a highly positive score represents a

large degree of certainty that the data point belongs to the person the SVM was

trained for, and a highly negative score represents the opposite.

GMM-Based Face Recognition

In our work on audio–visual speech recognition, we have used appearance-based

visual features extracted from the raw images of the mouth region [243]. We have

since adapted this approach to person identification using GMMs (identical in na-

ture to those used in the speaker identification field). Because probabilistic classi-

fiers, such as the GMM, typically require lower-dimension feature spaces to avoid

problems of sparse-training data, a dimensionality reducing transform is often re-

quired. In experiments discussed in Sect. 9.4, we present results on GMM-based

person identification using visual information derived only from the lip region of

the face.



128 T.J. Hazen et al.

9.2.3 Multimodal Fusion

In our work, a simple linear weighted summation is employed for the classifier

fusion where the weights for each classifier are trained discriminatively (on held-

out development data) to minimize classification error. For the combination of face

and speech classifiers, only one fusion parameter (the ratio of the weights of the

classifiers) needs to be learned. A simple brute force sampling of different ratios

can be used in this case. More complicated techniques (such as gradient descent

training) could be used in situations where more than two scores must be fused.

9.3 Multimodal Person ID on a Handheld Device

9.3.1 Overview

Our initial experiments in multimodal person identification were performed using

iPAQ handheld computers. A login scenario that combined face and speaker iden-

tification techniques to perform the multibiometric user verification process was

devised. When “logging on” to the handheld device, users snapped a frontal view of

their face, spoke their name, and then recited a prompted lock-combination phrase

consisting of three randomly selected two digit numbers (e.g., “25–86–42”). The

system recognized the spoken name to obtain the “claimed identity.” It then per-

formed face verification on the face image and speaker verification on the prompted

lock-combination phrase. Users were “accepted” or “rejected” based on the com-

bined scores of the two biometric techniques.

Speech data were collected utilizing the built-in electret condenser microphone

of the iPAQ. Face data were collected using a 640 × 480 CCD camera located on

a custom-built expansion sleeve for the iPAQ. The iPAQ handheld computer, com-

bined with the custom sleeve, was the handheld device platform used for pervasive

computing research in MIT’s Project Oxygen [244]. An image of the iPAQ with

the expansion sleeve is shown in Fig. 9.2. Because of the computation and memory

limitations, the images and audio were captured by the handheld device, but then

transmitted over a wireless network to servers which perform the operations of face

detection, face identification, speech recognition, and speaker identification. In the

future we expect the computational and memory components of handheld devices

to improve such that our systems can be deployed directly on these small handhelds.

9.3.2 Data Collection

For our set of “enrolled” users, we collected face and voice data from 35 different

people. Each person performed eight short enrollment sessions, four to collect im-

age data and four to collect voice data. For each voice session, each user recited 16

prompted lock-combination phrases. For each image collection session, users cap-

tured 25 frontal face images in a variety of rooms in our laboratory with different

lighting conditions. No specific constraints were placed on the distribution of the
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Fig. 9.2. The iPAQ handheld computer used in our study, along with two sample images

collected in the iPAQ

locations and lighting conditions; users were allowed to self-select the locales and

lighting conditions of their images. To illustrate the quality of the images, Fig. 9.2

shows two sample images captured during the data collection.

During image collection, the Viola–Jones face detector [238] was applied to

each captured image to verify that the image indeed contained a valid face. This

face detector occasionally rejected images when it failed to locate the face in the

image with sufficiently high confidence. When this occurred the user was instructed

to capture a new image. Due to a conservative face detection confidence threshold,

no false positives (i.e., images with incorrectly detected faces) were observed from

this face detector during the data collection.

Each voice and image session was typically collected on a different day, with the

time span between sessions often spanning several days and occasionally a week or

more. In total this yielded 100 images and 64 speech samples per enrolled user for

training. An additional set of four enrollment sessions of audio data (i.e., 64 addi-

tional utterances) from 17 of the training speakers was available for development

evaluations and multimodal weight fusion training.

A separate set of evaluation data was collected to perform user verification ex-

periments. For this evaluation set, we collected 16 sample login sessions from 25 of

the 35 enrolled users. This yielded 400 unique utterance/face evaluation pairs from

enrolled users. We also collected 10 impostor login sessions from 20 people not in

the set of enrolled users for an additional 200 utterance/face evaluation pairs from

unenrolled people. Each utterance/face pair collected from out-of-set impostors was

used to generate an impostor example for each of the 35 enrolled users yielding

7,000 impostor examples.
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9.3.3 Training

The face and speaker systems were trained on the enrollment data for the 35

enrolled users. To train the fusion weights, one of the four face enrollment sessions

was held-out and a development face identification system was trained on the re-

maining three face sessions. Face identification scores from this held-out set were

pairwise combined with speaker identification scores generated for utterances from

the existing speaker identification development set. The true in-set examples and

in-set impostor examples were provided to the weight training algorithm to generate

the multimodal fusion weights.

9.3.4 Face Detection Issues

The performance of a face identification system is affected by the quality of the

images it is provided. If the system tightly controls the user and rejects images in

which the head is tilted or rotated, the face is contorted in any unusual fashion, etc.,

then the variance of the data will be reduced and improved performance should be

expected. In our work we initially collected facial images within a system running

the Viola–Jones face detector. In our evaluations we have used a component-based

face detection algorithm which is more conservative in its detection decisions. As

a result, a sizable number of images in the training and evaluation data sets were

rejected by the component-based face detection algorithm.

To detail the effect of the face detection algorithm upon the face identification

results, two experiments were conducted: one where the conservative face detection

decisions were used, and a second experiment where the face detection algorithm

was forced to output a detected face even if the image’s detection score fell below

the standard acceptance threshold. These two experiments allow us to examine the

tradeoff between the added gain in accuracy enabled by stricter control in the input

facial images, and the potential added inconvenience of having users retake snapshot

images until the face detection algorithm accepts one.

9.3.5 Experimental Results

Table 9.1 shows our user verification results for three systems (face ID only, speaker

ID only, and our full multimodal system) under two different face detection condi-

tions. The results are reported using the equal error rate (EER) metric. The EER is

the point in the detection-error tradeoff (DET) curve where the likelihood of a false

Table 9.1. User verification results expressed as equal error rates (%), over three systems

(face only, speaker only, and multimodal fusion), using two different face detection scenarios

system forced face detection (%) conservative face detection (%)

face 4.87 2.57

speaker 1.66 1.63

fused 0.66 0.15
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Fig. 9.3. DET curves for face and speech systems run independently and in combination when

tested using impostors unknown to the system and when using the conservative face detection

threshold

acceptance of an impostor (i.e., a false alarm) is equal to the likelihood of false

rejection of the true user (i.e., a miss).

In the table’s forced face detection results, all evaluation sessions are used. How-

ever, for the conservative face detection results, 12% of the images were rejected. In

this case, the system’s verification results were computed using only the 88% of the

data that passed the more conservative face detection threshold. Though the speaker

identification system is unaffected by the face identification method that is used, the

speaker identification EERs are different in the two columns because rejection of an

image causes the companion spoken phrase from an evaluation login session to also

be discarded, thus altering the speaker identification results slightly.

In examining the results, one can see that the face identification system using

conservative face detection thresholding shows a nearly 50% improvement in EER

performance over the system using forced face detection. Of course, the improved

performance does come with a cost: in a deployed system, a user would face the

added inconvenience of providing a new snapshot image whenever the face detector

rejects an image.



132 T.J. Hazen et al.

Next, the results show that the speaker identification system is performing bet-

ter than the face identification component, though the performance is of the same

order of magnitude. When the two systems are used in combination, significant

improvements are obtained over the use of either modality by itself. When using

conservative face detection, the addition of the face identification system to the

speaker identification system produced a 90% relative reduction in the EER from

1.63 to 0.15%. DET curves for the three systems (when using conservative face

detection) are shown in Fig. 9.3. These results demonstrate that highly accurate bio-

metric authentication can be obtained via the multibiometric approach of combining

speaker identification and face identification technology.

9.4 The Use of Dynamic Lip-Motion Information

When performing face identification, an interesting question to ask is whether full

motion video provides any substantive advantage over the use of individual still

images. Video has been shown to be useful for face identification by providing

a collection of temporally related images. Increased robustness can be obtained

using video because face detection results can be interpolated over multiple frames,

and results from frames with poor images can be discounted or ignored when con-

sidered jointly with other better scoring frames [245]. However, one might wonder

if the actual dynamic motion of facial features themselves, such as the motion of

the lips when someone is talking, can be used to identify a person. Or even more

importantly, can the dynamic lip information provide any significant improvement

over using only the static information available from the individual frames extracted

from the video?

To examine this issue we have performed experiments using the AV-TIMIT

video corpus [246]. This corpus was originally collected for use in audio–visual

speech recognition experiments. It contains read sentences recorded in a quiet room

using a high-quality digital camera for the video and a far-field array microphone for

the audio. The first ten utterances recorded for each user were used to train the face

and speaker identification system and five additional utterances were used for our

evaluation. In total the corpus contains recordings from 221 different people (yield-

ing 221 × 5 = 1,105 evaluation utterances). Because the AV-TIMIT corpus being

used was recorded in quiet office conditions and the training data come from the

same session as the evaluation data, this person identification task does not repre-

sent realistic conditions. To make the task more challenging, our face identification

system only uses the lip region portion of the video. Despite the unrealistic condi-

tions of the task, we can still use this corpus to compare different visual features and

to examine the effect of fusing audio and visual information.

From each individual frame, the image of the lips is represented using the

top components from a principal component analysis (PCA) rotation applied to a

discrete-cosine transform of the image from the lip region (a.k.a. eigenlips [247]).

We refer to these feature vectors as the static PCA features. The first-order time

difference between PCA vectors in sequential image frames is used to represent the
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dynamic changes in lip images. We refer to these feature vectors as the dynamic
PCA features.

Because statistical classifiers require a tradeoff between the increased specificity

from larger feature space dimensionality and the susceptibility of large dimension

classifiers to overtraining, we have evaluated the system using several different fea-

ture vector dimensionalities. We have also constructed feature vectors using static

PCA features only, using PCA difference features only, and using a combination of

the static and dynamic features. To perform person identification in this system, the

individual feature vectors are modeled using a single GMM per speaker. Table 9.2

shows the closed-set person recognition performance on the 221 person AV-TIMIT

corpus using eight different feature vectors configurations used in our experiments.

The results show that static lip information is more useful than dynamic lip informa-

tion, but that improvements in person identification can be achieved by combining

the static and dynamic information.

Table 9.3 shows the individual results of the audio-only and visual-only person

identification system for closed-set person recognition. The table also shows the

combined audio–visual result when linearly combining the audio and visual scores.

In this case, the optimal weighting of 0.95 for the audio stream and 0.05 for the

visual stream yields an error rate of 0.27% (3 errors out of 1,105 trials). When ratio

of the audio weight to the visual weight is varied between 0.8/0.2 and 0.98/0.02 the

person identification is never worse than 0.54% (6 errors out of 1,105 trials).

These results on AV-TIMIT demonstrate, once again, the power of combining

audio and visual information for person identification. In on-going research, our

Table 9.2. Person identification results from visual lip images using static PCA features,

dynamic PCA features, and a fusion of the static and dynamic features

lip image feature vector person ID error rate (%)

48-dimension static PCA features 6.0

96-dimension static PCA features 3.6

192-dimension static PCA features 4.1

48-dimension dynamic PCA features 6.6

96-dimension dynamic PCA features 7.7

192-dimension dynamic PCA features 17.8

48-dimension static PCA features +
48-dimension dynamic PCA features 2.1

96-dimension static PCA features +
96-dimension dynamic PCA features 2.1

Table 9.3. Person identification results for audio-only, visual-only, and audio–visual systems

using audio and lip-image information from the AV-TIMIT corpus

system person ID error rate (%)

audio only 1.2

visual only 2.1

audio–visual 0.27–0.54
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group is currently moving beyond systems using the high-quality, single-session

AV-TIMIT video, and toward the creation of a system that can handle video col-

lected using commercial-off-the-shelf web cameras and handheld devices.

9.5 Noise Robust Speaker Identification

As discussed earlier, one of the great challenges of performing speaker or face iden-

tification in mobile applications is the possibility of severe variations in the feature

measurements due to the environmental conditions (i.e., background noise, light-

ing conditions, etc.). One technique for addressing this problem is the application of

missing feature theory. The basic premise of missing feature theory is that some fea-

tures of the observation space may be so corrupted that they become useless for the

task of person identification and should be ignored. For speaker identification this

could involve either temporal corruption (e.g., a brief impulsive noise such as a door

slam) or spectral corruption (e.g., a noise in a narrow spectral band such as a police

siren). Comparable analogies could also be drawn for face identification (e.g., sud-

den severe shadows, occlusions of portions of the face, etc.). One could also view the

problem of multimodal fusion within the missing feature theory framework, where

either of the audio or visual feature streams could be unreliable at any point in time

and ought to be ignored in deference to the more reliable information stream.

In some situations, the corruption may not be so severe that it completely masks

all usable information within a feature. In this case, a means of accounting for the

corrupting noise in the observation of a feature is more desirable than completely

ignoring the feature. In an ideal situation, models for biometric features could be

trained from enrollment data collected under all of the corrupting conditions the

user may encounter. Unfortunately, this is not feasible for most mobile applications

and methods for compensating for unseen conditions must be employed.

In our work we have investigated the problem of robust speaker identification

in noisy environments. In particular we have examined a missing feature approach

called the posterior union model, and a noise compensation technique called uni-
versal compensation. Though we have not yet extended this work beyond speaker

identification experiments, we believe these ideas can be extended to the problems

of face identification and the fusion of multimodal information.

9.5.1 The Posterior Union Model

The basic premise behind missing feature theory (as we apply it to speaker iden-

tification) is that improved performance can be achieved by utilizing only infor-

mation about features that can be reliably extracted from the input signal. Thus, if an

input signal can be represented as a collection of independent features

X = {x1, x2, . . . , xN}, then there exists some optimal subset of uncorrupted

features Xsub ⊆ X that can be used as the basis for the speaker identification deci-

sion. This problem can be expressed probabilistically as
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[S′, X ′
sub] = arg max

S,Xsub

P(S|Xsub) (9.4)

where S represents a specific speaker and Xsub represents a specific subset of fea-

tures from X . The expression seeks to find the most likely speaker S′ by jointly

maximizing the posterior probability over all speakers and all possible feature sub-

sets Xsub in X . Here X ′
sub is the optimal feature subset found for the most likely

speaker S′. Using Bayes’ rule the expression is rewritten as

[S′, X ′
sub] = arg max

S,Xsub

p(Xsub|S)P(S)
p(Xsub)

(9.5)

where P(S) is generally given a uniform distribution and p(Xsub) is a normalizing

term that is independent of the speaker S.

The PUM generalizes the problem by removing the constraint that an exact set

of optimal features, X ′
sub, be found. Instead, for a given number of features M ,

PUM makes the following assumption:

p(X ′
sub|S, M) ≈

∑
Xsub⊆XM

N

p(Xsub|S) (9.6)

Here, XM
N is the collection of all combinations of sets of M features chosen from

the full N features in X . The approximation assumes that the sum of p(Xsub|S)
over all Xsub drawn from XM

N is dominated by the optimal subset of M features.

This reduces the problem to finding the optimal number of reliable features M , but

not the exact subset. In practice, individual features are rarely completely reliable

or completely unreliable, but somewhere in between. Thus, the use of the union

model allows a softer probabilistic decision than forcing features to either be used

or discarded. Details of the PUM implementation can be found in [248].

9.5.2 Universal Compensation

If we consider that individual features may be only partially corrupted, then the

missing feature approach should be amended to account for partially corrupted fea-

tures. The universal compensation technique provides just such a mechanism. In-

stead of decomposing the features in X into reliable features that are used and

unreliable features that are ignored, the features can be decomposed into sub-

sets containing variable degrees of corruption. In this formulation we can use the

expression

p(X|S) =
L∑

l=0

p(Xl|S, Φl)P(Φl|S) (9.7)

where Φl represents a level of corruption and Xl represents the specific set of fea-

tures in X which are corrupted at level Φl. In this case the PUM can be extended

such that it considers the optimal number of features corrupted at each corruption

level Φl and not just those that are completely clean or completely corrupted. Details

of this formulation are found in [249].
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In practice for speaker identification tasks, the universal compensation technique

is applied by taking clean audio training data and adding noise at variable signal-to-

noise ratios to simulate the different corruption levels Φ0 to ΦL. We have primarily

added white noise to the clean training to simulate the corruption, but different types

of noises could be used depending on the expected environments. Models for each

speaker at each corruption level are trained. During evaluation on unseen data the

posterior union model is used to select the number of features from the full set that

optimally match each corruption level.

9.5.3 Experimental Results

To demonstrate the effectiveness of the posterior union model and universal

compensation techniques, we conducted experiments on a handheld device database

collected at MIT. The database was designed to study speaker verification in reali-

stic noisy conditions with limited enrollment data [250]. The database contains 48

enrolled speakers (26 male, 22 female) and 40 impostors (23 male, 17 female), each

reciting short ice cream flavor phrases.

In our primary experiments, users enrolled into the system by speaking four

examples of a specific phrase into the handheld device. The enrollment session

was conducted in a quiet office environment using an external ear-piece micro-

phone. For each enrolled user, speaker identification models were trained from the

four enrollment examples. Low-pass filtered white noise was added to each exam-

ple at nine different signal-to-noise ratios between 4 and 20 dB (increasing 2 dB

every step). This gives a total of ten corruption levels (including the no corrup-

tion condition) for the training phase. To evaluate the system, the same enrolled

users and the 40 previously unseen impostors recited new evaluation phrases us-

ing the same handheld device. However, the evaluation data were instead collected

outdoors next to a noisy street intersection using the internal microphone of the

device.

The speaker identification system uses phrase-dependent hidden Markov mod-

els to represent each speaker in the enrollment set. The features used to represent the

acoustic information are modeled with subband spectral components derived from

decorrelated log filter-bank amplitudes collected from 20-ms wide time windows

sampled every 10 ms. In total two energy and time difference values were used to

represent the features within ten different spectral subbands. The PUM is thus tasked

with selecting the optimal number of subbands corrupted at each of the ten different

noise corruption levels. Details of the system used in this experiment can be found

in [249].
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Fig. 9.4. DET curves comparing four limited enrollment speaker verification systems trained

in a clean environment and tested in a mismatched noisy environment

For our experiments, we implemented four different systems all based on the

same set of acoustic features:

– BSLN-Cln: a baseline system trained only on the clean office data and tested

using the full set of acoustic features.

– BSLN-Mul: the baseline system trained on the full set of clean and artificially

corrupted data pooled together to train a single multicondition model for each

speaker.

– PUM: a system trained only on the clean office data but allowed to select the

optimal number of reliable subband components using the PUM approach.

– UC: a system trained on the clean and artificially corrupted data using the PUM

approach to optimally select number of subbands matching each corruption

level.

The experimental results are shown in Fig. 9.4. The figure shows that a baseline

speaker verification system trained in a quiet environment performs quite poorly

when it is then used in a noisy environment (next to a noisy street intersection in this

case). However, by artificially adding various levels of white noise to the training

material, the EER of the system is reduced from 30.2 to 22.4%. If the posterior

union model is used in conjunction with the baseline system, the EER is reduced

from 30.2 to 17.2%. Finally, if the PUM is combined with the system trained using

varying levels of artificially added noise (i.e., the universal compensation approach),

the EER is further reduced to 14.1%. These results show that techniques do exist to
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improve the robustness of speaker identification even in noisy environments that are

mismatched with the systems training conditions.

9.6 Summary

In this chapter, we have shown the power of combining face and speaker identifi-

cation techniques for improved person identification. In Sect. 9.3, we demonstrated

that a multibiometric approach can reduce the EER of a user verification system

on a handheld device by up to 90% when combining audio and visual informa-

tion. In Sect. 9.4, we showed that dynamic information captured from a person’s lip

movements can be used to discriminate between people, and can provide additional

benefits beyond the use of static facial features. In Sect. 9.5, we addressed the prob-

lem of robust speaker identification for handheld devices and showed the benefits of

the PUM and the universal compensation techniques for handling corrupted audio

data. In future work we plan to extend the use of the PUM to different facial feature

vectors extracted from images as well as to the multimodal fusion of different audio

and visual features.
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10.1 Introduction

In recent years, among the many biometric modalities, the face has received the

most interest. Not only is face recognition one of the most widely accepted modal-

ities, but also advances in processing power have allowed the development of more

complex algorithms while still providing a relatively rapid response to queries. Ear

recognition, on the other hand, is a relatively new field. However, it holds a lot of

promise as the complexity of the human ear is even higher than that of the face,

and ears are subject to fewer deformations. In addition, the problem of recognizing

an ear is not too different from that of recognizing a face. Therefore, part of the

large body of research available in 3D face recognition can be inherited to 3D ear

recognition. Both face and ear recognition require no contact with the subject, thus

being more easily accepted by the public, compared to other biometrics such as

fingerprints.

Face recognition has been traditionally performed using 2D (visible spectrum)

images, while hybrid approaches have used infrared spectrum images, and even

3D geometry. Infrared face recognition has not been widely adopted due to the high

cost of the infrared cameras necessary to acquire the data. In contrast, the cost of

3D scanners has dropped dramatically, so it has become feasible to deploy them in

the field, and therefore the interest in developing algorithms that use 3D data has

increased.

The main reason for using information from 3D data as a biometric (both for

faces and ears) is that the data acquired by 3D acquisition devices are invariant

to pose and lighting conditions, these being the major challenges that face recog-

nition algorithms must cope with. Moreover, image-based face recognition algo-

rithms are more susceptible to impostors. Indeed, if an individual is able to take

an image of a subject allowed to enter a facility, they may use a printout of that

image in order to break in. To avoid this, the face recognition algorithm must

be coupled with liveness test algorithms. Attempting such an attack on a system

based on 3D data would be much more difficult, since the attackers would need to

obtain an accurate 3D model (sculpture) of the person whom they would like to

impersonate.
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The challenges of 3D face and ear recognition which concern our approach are

the following:

– Accuracy gain: a significant gain in accuracy with respect to 2D face and ear

recognition systems must justify the introduction of 3D recognition systems.

– Efficiency: 3D capture devices generate substantially more information than

2D cameras. Using this large volume of information is expensive in terms

of computation time and storage requirements. Therefore, the algorithms we

develop need to be efficient both in time and space.

– Automation: the systems must be completely automated. It would be unreason-

able to have a person assigned to the face or ear recognition system in order to,

for example, have them select landmarks on the meshes.

– Capture devices: most high-resolution capture devices were developed for med-

ical and other low-volume applications. A deployable 3D face or ear recogni-

tion system must be able to process several persons a minute if it is to be used

in high-traffic areas.

– Testing databases: there are only few large databases of 3D faces and even fewer

databases of 3D ears which are widely accepted.

– Robustness: the system must perform robustly and reliably under a variety of

conditions (e.g., lighting, pose variation, facial feature variation).

Section 10.2 provides an overview of some recent methods used for face and ear

recognition. Section 10.3 presents a general deformable model-based framework for

matching 3D shapes, and then Sects. 10.4 and 10.5 present its application in 3D face

and ear recognition, respectively.

10.2 Related Work

10.2.1 Face Recognition

Face recognition has received unprecedented attention in recent years. At the IEEE

Computer Vision and Pattern Recognition conference in 2006, over 80 papers were

published with applications to the subject. However, many authors still report re-

sults on small databases, or on databases which are not available for others to use.

Therefore, many of the results reported are not directly comparable.

To create a common basis for comparing algorithms, and to determine whether

2D face recognition may be used in highly secure locations, the FERET data-

base [251] was used. During the Face Recognition Vendor Test (FRVT) 2002 [252],

which followed, it has been shown that the algorithms at the time were not capable of

offering the degree of reliability needed. More recently, the Face Recognition Grand

Challenge (FRGC) dataset was made available for researchers by NIST [253]. It

contains both 2D and 3D range images. The FRGC has released data on two occa-

sions. The first dataset released as part of FRGC in the spring of 2004, namely

FRGC v1, included 943 range images, all having only neutral expressions. In spring

2005, the FRGC v2 database was released, and it included over 4,000 range images,
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of which over 40% exhibit nonneutral facial expressions. The largest face recogni-

tion database to date, which contains both 2D and 3D data, will be used in the FRVT

2006 [254]. Several researchers have now reported results using the FRGC v1 and
v2 databases.

Lu and Jain [255] use a generic 3D model to create user-specific deformable

models in the neutral position. In the identification phase, the distance returned by

the iterated closest point (ICP) algorithm is used for matching all user-specific mod-

els to the new dataset. They report 92.1% rank 1 identification on a subset of FRGC
v2. Wang et al. [256] use a global optimization procedure to generate a conformal

map of the geometry, which then is processed using image processing techniques.

The results are encouraging, but are generated using only 100 3D scans.

Russ et al. [257] use principal components analysis (PCA) on range images

generated after the data have been aligned to a generic 3D model. The results were

presented on subsets of FRGC v2, and indicate that this improvement outperforms

the pure PCA approach, but still suffers from facial expressions. Lin et al. [258]

compute summation invariant images from the raw 3D data. Using the baseline PCA

approach included in the FRGC v2, but on cropped images, they report verification

rates between 80.82 and 83.13%.

Husken et al. [259] present a multimodal approach that uses hierarchical graph

matching (HGM). They used the same approach on both the 2D images and on the

range images. However, the graph is created using the 2D image and transferred

to the range image directly. The verification rate at 0.001 false accept rate (FAR)

of the HGM solely on range images is lower than on 2D images on the FRGC
v2 database. Range images alone yield 86.9% verification rate, but the fusion of

the two modalities results in 96.8% verification. Maurer et al. [260] also present a

multimodal approach tested on the FRGC v2 database, and report a 87% verification

rate at 0.01 FAR.

Bronstein et al. [261] represent the geometry by isometrically embedding it into

a low-dimensional Euclidean space by using multidimensional scaling. The recog-

nition is accomplished using canonical forms with promising results on a propri-

etary database. The authors also propose an approach using Generalized MDS [262].

However, the results are reported only on a subset of 180 images from FRGC v2.

10.2.2 Ear Recognition

The usefulness of the human ear as a biometric was first recognized in the 1980s.

The most famous early study was presented by Iannarelli [263] in 1989. He collected

about 10,000 ear images and manually sectioned each ear image into equal sized

triangles. Then, by measuring the distances between specific points on the ear, he

indicated that ear data could be used as a biometric for identification purposes.

One of the first computer vision attempts at using the ear for recognition pur-

poses was performed by Burge and Burger [264]. They used a Canny edge detec-

tor to extract the edges from a 2D image, estimated curves of the ear, and used

a Voronoi neighborhood graph of the curves for matching. Chang et al. [265] use

PCA for matching 2D ear images and achieve a 71.6% rank 1 recognition rate.
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Along with the development of 3D scanners, 3D ear databases have been created

and algorithms developed for using such data. Yan et al. [266–269] use an ICP-based

approach which registers 3D ear datasets to compute a distance score based on the

mean-squared distance between the registered meshes. In the initial implementa-

tion [268], they segmented the ear data manually from the mesh, and achieved a

98.8% rank 1 recognition rate. In their recent publication [269], they use a slightly

larger database (415 subjects), and they improved the algorithm by making the ear

extraction completely automated, achieving a rank 1 identification rate of 97.6%.

10.3 Methods

10.3.1 Generic 3D-Driven Recognition System

We have developed a system which is capable of using 3D data as input, along with

a suitable model to output metadata information. The metadata information is then

used for recognition. The model is user-defined, for instance, a generic face or a

generic ear. This model needs to be constructed only once, and it can handle objects

belonging to the same class. Once the data are acquired, the model is fitted to the

data and used to generate a geometry image and a normal map, which are trans-

formed into the wavelet domain. Only a small part of the wavelet coefficients are

stored as metadata. In other words, the raw data are transformed from the 3D space

to a regular grid representation of lower dimensionality that allows the application

of state-of-the-art wavelet analysis algorithms.

Our recognition procedure can be divided into two distinct phases, enrollment

and recognition:

– Enrollment. Raw data acquired by the scanner are converted to metadata and

stored in a database. The following steps describe the conversion from raw data

to metadata (Fig. 10.1):

1. Acquisition: the sensor acquires raw data which are converted into a polygo-

nal representation (a 3D mesh). A preprocessing step takes place to alleviate

scanner-specific issues.

2. Alignment (Sect. 10.3.4): the data are aligned to the model into a unified

coordinate system using a multistage alignment method.

3. Deformable model fitting (Sect. 10.3.5): the model is fitted to the data.

4. Metadata generation (Sect. 10.3.6): generate a geometry image and a nor-

mal map from the fitted model. Convert these images into the wavelet do-

main using the Haar decomposition, and if greater accuracy is desired, then

also transform them using the steerable Pyramid transform. Store only the

most significant coefficients.

– Recognition. We repeat the procedure used for enrollment, except that instead

of storing the metadata, we employ them for comparison with the metadata in

the database.
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Fig. 10.1. Enrollment phase of the proposed integrated 3D face recognition system

10.3.2 Data Preprocessing

The purpose of preprocessing the data generated by the sensors prior to applying

our algorithm is the elimination of any sensor-specific issues, and the unification of

data into a common format which is accepted by our program. The preprocessing

consists of the following filters, applied in the given order:

1. Median cut: this filter removes spikes from data. Spikes are common if the data

are acquired using a laser range scanner. Data acquired from stereo scanners

may also need spike removal but to a lesser extent.

2. Hole filling: both laser scanners and stereo systems are prone to producing holes

in the meshes they generate.

3. Smoothing: all high-resolution scanners produce noisy data in real-life condi-

tions.

4. Subsampling: our deformable model fitting (Sect. 10.3.5) effectively resamples

the data, making the resolution of the input data less relevant. If the number of

polygons is high enough, we subsample the data for efficiency purposes, with-

out losing performance in the recognition phase. Subsampling further reduces

the noise in the geometry.

The current generation of scanners outputs either a range image or a 3D mesh.

We implemented the above filters to operate on the native representations of the

scanners (Fig. 10.2), and on one-neighborhoods for both representations. Our ex-

periments indicate that the filters perform better if the native data representation is

used for filtering, and then the output is converted to a common polygonal format.
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(a) (b) (c) (d)

Fig. 10.2. Sensor-dependent preprocessing. Laser range scanner: (a) input depth image,

(b) raw polygonal data (200,000 triangles), and (c) processed data (16 K). Stereo camera:

(d) raw data (34,000 triangles)

10.3.3 Annotated Model

Our approach uses a parameterized annotated model which depends on application.

For face recognition, we use an annotated face model (AFM), while for ear recogni-

tion we use an annotated ear model (AEM). This model is central to our work, since

we use it in the alignment, fitting, and metadata generation; we created the models

using 3D modeling tools and we ensured that they are anthropometrically correct

using Farkas’ data [270]. Using information from facial physiology and from the

anthropometry of the ear, we annotated the models into regions corresponding to

the same anatomical features. Finally, we applied a continuous global UV parame-

terization on the model. The injective property of our parameterization allows us to

map all vertices of the model from R3 to R2, and vice versa. Therefore, we define

the model both as polygonal data in R3 and in R2 as a geometry image [271–273].

A geometry image is a regular sampling of the model represented as a 2D image

with three channels, each channel corresponding to the x, y, and z components.

Since local neighborhoods on the mesh are preserved (i.e., neighboring vertices are

preserved even in the geometry image), we can reconstruct an approximated version

of the original mesh from the geometry image. The approximation level depends on

the resolution of the image (the sampling of the mesh).

10.3.4 Alignment

Our work on face recognition has indicated that the alignment of the annotated

model (AM) to the data is a key part of any geometric approach [274]. If a mis-

alignment error occurs, it cannot be corrected in the later stages of this or similar

approaches. We present a novel multistage alignment method that offers robust and

accurate alignment even when relatively large deformations occur in the input data.

Before fitting, we align each preprocessed dataset with the annotated model.

The alignment stage computes a rigid transform, combining rotation and translation,

which brings the data as close as possible to the model. We propose a multistage
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alignment algorithm which propagates the alignment variables from one stage to

the next. The first algorithm is more resilient to local minima, while the next two

algorithms provide greater degrees of accuracy:

1. Spin images: first, we establish a plausible initial correspondence between the

data and the model. If we do not expect large rotations and translations in the

database, this step may be omitted. To compute the rough initial alignment,

we employ the spin images algorithm developed by Johnson [275]. We com-

pute correspondences on a subset of the vertices in the data. Next, they are

grouped into geometrically consistent groups. The transformations they yield

are checked to determine whether they rotate the data by an acute angle, based

on the assumption that the input data are neither flipped on the z-axis nor in-

verted on the y-axis. This is a reasonable assumption, since the meshes com-

puted by scanners respect the fact that the y-axis is vertical, while the z-axis

is the depth. If the scanner does not follow these assumptions, the data can be

transformed in the preprocessing stage. These checks are essential due to the

bilateral symmetry property of the human face (if applied for face recognition).

2. Iterative closest point (ICP): we use the ICP algorithm [276] as the main step

of the alignment process. To obtain better alignment, we extended the original

approach in a number of ways. We exploit the model annotation by assigning

a different weight for each annotated region, and we compute a weighted least

squares solution for the rigid transformation. Additionally, points belonging to

the surface boundaries are rejected [277]. This additional constraint ensures that

no residual error is introduced into ICP by the nonoverlapping parts of the two

surfaces. If the final transform is not satisfactory, we have the option of running

a trimmed ICP algorithm [278].

3. Simulated annealing on z-buffers: this is the refinement step, which ensures that

the data are well aligned to the model. We apply the global optimization algo-

rithm known as the enhanced simulated annealing (ESA) [279] on the difference

of the z-buffers of the model and the data.

10.3.5 Deformable Model Fitting

The purpose of fitting the model to the data is to capture the geometric information

of the desired object. To fit the model to the data we utilize the elastically adapted

deformable model framework of Metaxas and Kakadiaris [280].

The analytical formulation adaptive is given by:

Mq
d2q

dt2
+ Dq

dq

dt
+ Kqq = fq,

where Mq is the mass matrix, Dq is the damping matrix, Kq is the stiffness matrix,

and fq are the external forces. The external forces drive the deformation. The stiff-

ness matrix defines the resistance against the deformation, while the mass and damp-

ing matrices control the velocity and the acceleration of the vertices. The method
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(a) (b) (c) (d) (e)

Fig. 10.3. Fitting process of the AEM: (a) the ear data, (b) subdivided AEM (SAEM),

(c) fitted SAEM after 8 iterations, (d) 32 iterations, and (e) 64 iterations

used to solve this equation is based on the finite element method approximation.

Figure 10.3 depicts the fitting process of our AEM at various iterations.

Mandal et al. [281,282] use subdivision surfaces to represent the geometry of the

deformable model. Subdivision surfaces [283] offer increased flexibility and com-

putational efficiency when compared to parametric surfaces. We use our annotated

model as the base for the subdivision surface. The subdivision is performed using

Loop’s scheme [284]. The analytical formulation remains unchanged, but the FEM

implementation is integrated with the subdivision surface computation. Therefore,

we can solve the equation at a specific resolution (limit surface) while simultane-

ously applying the computed forces back to the control mesh (the low-resolution

annotated model). For an annotated model with n vertices and m triangles we have

3n degrees of freedom in the control mesh and 4lm finite elements (where l is the

level of the limit surface).

The polygonal data act as attractors for the vertices of the subdivision surface,

thus driving the deformation. At each iteration, we need to compute several nearest

neighbor searches, which implemented naively have a complexity of O(k), where

k is the number of triangles of the data. Therefore, to make the system operate at

speeds reasonable for deployment, we employ a space partitioning technique [285]

which lowers the average cost of a search from O(k) to O(log k). When the process

concludes after a given number of iterations, the annotated model has converged to

the polygonal data.

10.3.6 Geometry Image Representation

The fitted annotated model from the previous step retains its native properties, thus

allowing us to create a geometry image and a normal map from it (Fig. 10.4c,d).

Since the model is UV parameterized, then for each (u, v) pair there is one point

(x, y, z) ∈ R3 belonging to the model. We sample the UV space ([0..1] × [0..1]) at

regular intervals. For each sampled (u, v) value, we use the corresponding (x, y, z)
as a “pixel value.” The result is called a geometry image. The resolution of the

sampling is correlated to the resolution of the subdivided surface. We compute the
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(a) (b) (c) (d)

Fig. 10.4. Full face model after fitting: (a) Fitted model overlayed on the face data, (b) fitted

model geometry, (c) corresponding geometry image, and (d) corresponding normal map

normal map directly from the geometry image. In contrast to the geometry image,

the normal map contains 3D normal vectors to the surface as its pixel values.

We treat each channel of the geometry image and normal map independently.

Each channel is analyzed using a transform. The coefficients are stored as metadata.

We use two different transforms, thus we have two sets of coefficients: the Haar and

the Pyramid transform. The Pyramid transform is a more computationally intensive

transform, and therefore we may choose not to use it if the system needs to be tuned

for speed. Currently, we apply the Haar transform on both the normal map and

the geometry image, while we apply only the Pyramid transform to the geometry

image.

– Haar wavelets. The choice of Haar wavelets was based on their properties. The

transform is conceptually simple, and computationally efficient. The amount of

memory needed to compute the transform is equal to the input image size, and

the transform is exactly reversible, thus allowing us to compare the wavelet co-

efficients directly. The Haar wavelet transform is performed by applying a low-

pass and a high-pass filter on a 1D input, then repeating the process on the two

resulting outputs. Since we are working with images, there will be four outputs

for each level of the Haar wavelet (low–low, low–high, high–high, high–low).

We compute a level 4 decomposition, meaning that we apply the filters four

times, which on the geometry images we have, yields 256 16×16 wavelet pack-

ets. Each packet contains a different amount of energy from the initial image. It

is possible to ignore most of the packets without losing significant information

(Fig. 10.5). For a full discussion, please see [286, 287].

– Pyramid transform. The second transform decomposes the images using the

complex version [288] of the steerable Pyramid transform [289], a linear

multiscaled, multiorientation image decomposition algorithm. The resultant

representation is translation-invariant and rotation-invariant. This feature is

desirable to address possible positional and rotational displacements caused by

facial expressions. Our algorithm applies a three-scale, ten-orientation complex
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(a) (b) (c) (d)

Fig. 10.5. Haar wavelet analysis for the normal map image from Fig. 10.4: (a) zero level,

(b) first level, (c) second level, and (d) third level. Note that the real numbers were mapped

to a gamma corrected gray-scale for visualization purposes

steerable Pyramid transform to decompose each channel of the deformation

image. Only the low-pass orientation subbands at the furthest scale are stored.

This enables us to compare two images directly and robustly using multiple

orientations.

10.3.7 Distance Metrics

In the authentication phase, the comparison between two datasets is performed us-

ing the metadata information. We keep metadata as the coefficients of the geometry

image, and the normal map of each dataset. Additionally, we may have two coeffi-

cient types for each: the Haar coefficients and, optionally, the Pyramid coefficients.

To compare the metadata, we need to define a distance metric for each type of coef-

ficient:

Haar metric: in the case of Haar wavelets, the metric we use is weighted L1.

Pyramid metric: We use a modified version of the complex version of the struc-

tural similarity index (CW-SSIM) [290], which we will discuss below.

Fusion: when both types of coefficients are used, we fuse the distances given by

the Haar and the Pyramid metrics. We will present the various ways of fusing scores

after we explain the Pyramid metric.

The Pyramid Metric

To quantify the distance between the two compressed deformation images of the

probe and gallery, we need to assign a numerical score to each annotated region Fk

of the model. Note that Fk may be distorted in different ways by facial expressions

in the case of the face model. To address this, we employ the CW-SSIM index al-

gorithm. CW-SSIM is a translational insensitive image similarity measure inspired

by the structural similarity (SSIM) index algorithm [291]. A window of size 3 is

placed in the X direction (first channel). The window then traverses across the input

image one step at a time. In each step, we extract all wavelet coefficients associ-

ated with Fk. This results in two sets of coefficients pw = {pw,i|i = 1, . . . , N}
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and gw = {gw,i|i = 1, . . . , N}, drawn from the probe image and the gallery im-

age, respectively. The distance measure between the two sets is a variation of the

CW-SSIM index originally proposed by Wang and Simoncelli [290]

S̃(pw, gw) = 1−
(

2
∑N

i = 1 |pw,i||gw,i|+ K∑N
i = 1 |pw,i|2 +

∑N
i = 1 |gw,i|2 + K

)
·
(

2|∑N
i=1 pw,ig

∗
w,i|+ K

2
∑N

i=1 |pw,ig
∗
w,i|+ K

)r

.

The first component of the subtrahend measures the equivalence of the two coef-

ficient sets. If pw = gw, then distance 0 is achieved. The second component reflects

the consistency of phase changes, which is insensitive to the translational changes

caused by facial expressions. The exponent r emphasizes the second component.

Experimentally, we found r = 7 optimal for most cases, but r should be increased

if a strong facial expression between P and G is known or detected. K is a small

positive number to insure stable behaviors when tiny numbers are input.

As the sliding window moves, the local S̃(pw, gw) at each step w is computed

and stored. The weighted sum of the local scores from all windows gives the distance

score of Fk in the X direction

ex(Fk) =
∑N

w=1
(bw · S̃(pw, gw))

where bw is a predefined weight depending on which subband the local window lies

on. The scores for the Y and Z directions are computed similarly. By summing the

scores in the X, Y, and Z directions, the total distance score of Fk is computed. The

discrete sum of the scores for all Fks is the overall distance between the probe image

P and the gallery image G

dCW−SSIM (P,G) =
∑N

k=1
(ex(Fk) + ey(Fk) + ez(Fk)).

Score Fusion

Since we use both CW-SSIM and the L1 metric from our previous work [274], we

compute the distance between a probe and gallery by the following fusion method:

1. Score computation: compute the distances between the probe and the gallery

using L1Haar, and store this into a vector H . Next, compute the distances

between the probe and the gallery using the CW-SSIM method, and store this

into a vector CW .

2. Normalization: compute the mean (μ), and standard deviation (σ) of both H
and CW . Then let Hn = H−μH

σH
and CWn = CW−μCW

σCW
.

3. Fusion: compute final distance: Distance = w1 ∗ Hn + w2 ∗ CWn, where

w1 and w2 are the weights for the two scores, and they are proportional to the

descriptive power of the two metrics.
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10.4 3D Face Recognition

10.4.1 Databases

We report our results on 3D face recognition using two databases. The first is the

well-known FRGC v2 database [253]. The second database is a collection of 3D

faces acquired at the University of Houston (UH).

To demonstrate the sensor-invariant nature of the proposed algorithm, we com-

bine the UH database with FRGC v2.

The FRGC v2 database contains 4,007 3D scans of 466 persons. The scanner

used during the acquisition was a Minolta 910 laser scanner. It produces range im-

ages with resolution of 640 × 480 if the subject occupies the full field of view.

The scans were acquired in a controlled environment, and they contain various

facial expressions (e.g., happiness, surprise). The subjects are 57% male and

43% female, with the following age distribution: 18–22 (65%) years old, 23–27

(18%), and 28 (17%) years or over. The database contains annotation information

such as gender and type of facial expression. Figure 10.6 depicts examples of the

various expressions present in the database.

The UH database contains 884 3D facial datasets acquired using the 3dMDTM

Qlonerator optical system (with one-pod and two-pod setups) over a period of 1 year.

Compared to FRGC v2, the UH database is more challenging as the subjects were

encouraged to assume various facial expressions and were allowed to wear acces-

sories (e.g., glasses or hats).

We extend the FRGC v2 database with the UH database to report results on a

mixed-scanner database. The extended database contains a total of 4,891 datasets,

of which 82% were acquired using a laser scanner, and the rest were acquired using

an optical scanner.

10.4.2 Results

We report our results using two different scenarios: identification and verification.

In the identification scenario, we divide the database into two distinct sets: a gallery

and a probe set. Each probe has exactly one corresponding dataset in the gallery set.

Therefore, each subject is represented by only one gallery dataset, increasing the

experiment’s difficulty. Since there are many ways of dividing the database into a

probe and a gallery set, we chose to use the first dataset of each subject as gallery,

and the rest as probes. The performance is measured by using a cumulative matching

characteristic (CMC) curve and the rank 1 recognition rate is reported.

In the verification scenario, we measure the verification rate at 0.001 FAR. The

verification rate is defined as the fraction of datasets that are positive (e.g., claiming

to be who they really are) which are classified as positive. The FAR is defined as the

fraction of datasets that are negative (e.g., pretending to be somebody else), but are

classified as positive. The results are plotted using a receiver operating characteris-

tic (ROC) curve which plots verification rate as a function of FAR. The FRGC v2
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 10.6. The subjects in the FRGC v2 database were asked to exhibit various facial

expressions. Notice that the subjects clothing and parts of the hair are also present in the

input, and that they vary between sessions. Raw data and the fitted model: (a)–(f) blank stare,

(g),(h) smile, (i),(j) surprise, and (k,l) puffy cheeks

database defines three possible selections of datasets (referred to as ROC I, ROC II,

and ROC III). In ROC I all the data are within semesters, in ROC II they are within

1 year, while in ROC III the samples are between semesters. These experiments are

of increasing difficulty.
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Table 10.1. Verification rates of our system at 0.001 FAR on the FRGC v2 database

ROC I (%) ROC II (%) ROC III (%)

fusion 97.3 97.2 97.0

Haar 97.1 96.8 96.7

Pyramid 95.2 94.7 94.1

Experiment 1: Transforms

The purpose of this experiment is to evaluate the performance of the two transforms,

and to provide a reference score on the FRGC v2 database. Using the fusion of the

scores provided by our two wavelet transforms, we obtained a verification rate of

97.3% for ROC I at 0.001 FAR. The weighted sum method gave the best results. We

present the verification results at 0.001 FAR in Table 10.1, and the full ROC curves

in Fig. 10.7.

Although the Pyramid transform and the CW-SSIM are far more computation-

ally expensive than the Haar transform and the L1 metric, they achieve poorer

results. However, when the Pyramid scores are fused with the Haar scores, they

improve the overall performance. To the best of our knowledge, this is the highest

performance reported on the FRGC v2 database for the 3D modality.

Experiment 2: Facial Expressions

Facial expressions have traditionally decreased the performance of face recognition

systems. In this experiment, we evaluate the impact of facial expressions on the

performance of our system. All datasets in FRGC v2 are annotated, and one of the

categories recorded is the facial expression. We chose to divide the database into

two distinct sets: the first set contains nonneutral facial expressions only, while

the second set contains datasets that were annotated as having a neutral facial

expression.

Figure 10.8 depicts the ROC curves for the two subsets and the entire FRGC v2
database. We compare the performance of the two subsets to the performance on the

entire set at 0.001 FAR in Table 10.2. The average decrease of 1.56% in verification

between the full database and the subset containing only facial expressions is very

modest when compared to most other systems, given the fact that this subset con-

tains the most challenging datasets from the entire database and is fully automatic.

The small decrease in performance can be attributed to the use of the deformable

model framework and the annotated face model.

Experiment 3: Multiple Sensors

The purpose of this experiment is to evaluate the performance of our system using

data from multiple sensors. Verification experiments depend heavily on the pairs

chosen for evaluation. In the absence of any good way of designing such pairing we
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(a)

(b)

(c)

Fig. 10.7. Performance of our system using different transforms (Haar and Pyramid) as well

as their fusion on the FRGC v2 database. Results reported using: (a) ROC I, (b) ROC II, and

(c) ROC III
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(a)

(b)

(c)

Fig. 10.8. We have divided the FRGC v2 database into two subsets: the first containing only

nonneutral facial expressions and the second one only neutral expressions. Comparison of

performance vs. the full database using: (a) ROC I, (b) ROC II, and (c) ROC III
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Table 10.2. Performance of our system at 0.001 FAR on the full FRGC v2 database, on a

subset containing only nonneutral facial expressions, and on a subset containing only neutral

expressions

ROC I (%) ROC II (%) ROC III (%)

full database 97.3 97.2 97.0

nonneutral expressions 95.6 95.6 95.6

neutral expressions 99.0 98.7 98.5

Fig. 10.9. System performance for identification experiment on different databases: FRGC
v2 database with 466 gallery and 3,541 probes (laser scanner), UH database with 240 gallery

and 644 probes (optical scanner), and FRGC v2 + UH database with 706 gallery and 4,185

probes (both scanners)

have opted for an identification experiment, which we consider more representative

and more easily duplicated.

On the FRGC v2 set the rank 1 identification rate was 97.0%, while for the UH
set, the system achieved 93.8%. Figure 10.9 depicts the full CMC curve. The com-

bined experiment yielded a rank 1 recognition rate of 96.5%, which represents a

drop in performance of only 0.5% when compared to the original FRGC v2 exper-

iment, demonstrating the system’s robustness when data from multiple sensors are

included in the same database.
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10.4.3 Discussion

The results indicate that our algorithm is robust with respect to facial expressions.

A few cases still remain in which the distance between the gallery and the probe of

the same subject may be larger than the distance between the gallery and a probe

belonging to another subject. This may happen if exaggerated facial expressions

occur, as they tend to change even the most stable landmarks on the face.

We also have to note that the FRGC v2 database contains eight datasets which

do not properly represent a human face. The reason for this is that during the laser

scanning process the subjects moved, and therefore the resulting mesh does not

accurately represent their face. Therefore, an algorithm which uses the 3D shape as

a feature cannot possibly achieve 100% verification rate on this database.

10.4.4 3D Face Recognition Hardware Prototype

We designed and built a prototype field-deployable 3D face recognition system

(Fig. 10.10). It consists of a 3dMDTM optical scanner using a one-pod configura-

tion, which is connected to a PC. A webcam captures a continuous video stream

which is used to detect whether a person is facing the 3D camera. When the subject

is facing the camera and remains relatively still for more than 2 s, the system triggers

the optical scanner and the 3D data of the individual’s face are captured. The system

can either enroll the subject into the database, or perform a scenario-specific task.

In an identification scenario, the system will display the closest five datasets to the

operator. In a verification scenario, the system will determine whether the subject is

who they claim to be, based on a preset distance threshold.

The system’s characteristics are:

– Automation. We used only fully automatic methods for triggering the capture

and processing the 3D data. To determine whether a subject is facing the cam-

era, the OpenCV [292] implementation of a face detector is employed.

– Space efficiency. The raw 3D data captured by the scanner are usually of the

order of 2 or 3 MB, depending on how close the subject is to the camera.

– Time efficiency. Regardless of the scenario (enrollment, identification, and ver-

ification), the most time-consuming step of our algorithm is metadata genera-

tion, which takes on average 15 s, with unoptimized code. In the verification

and identification scenarios we need to match the computed metadata to entries

from the database. The current prototype, using an Opteron 250 (2.4 GHz), can

process over 4,000 comparisons per second. If the database size is larger, adding

multiple PCs on the backend will linearly reduce the time needed to compute

the scores.

Chen et al. [293] claim that the usage of 3D cameras is impractical because of

the fact that they need to be calibrated and because they rely on a structured light

pattern that is deemed intrusive. In our experience, they are not problematic. The

calibration only needs to be performed once every two weeks, and the structured

light pattern is barely visible. Moreover, the system allows the acquisition to occur
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Fig. 10.10. Prototype system using a 3dMDTM optical scanner with a one-pod configuration

in a very natural way, since the subject is not required to assume any specific pose,

except to center their facial image in the screen facing them.

10.5 3D Ear Recognition

We have adapted our generic 3D object recognition algorithm to work on ear data-

sets. There are several differences between the baseline approach, which is used

for face recognition, and ear recognition. We discuss the differences in the follow-

ing section.

10.5.1 Ear-Specific Issues

Ear data are generally more difficult to acquire than face data. There are several

reasons for this:

– Stereo scanner-specific issues. The ear capture system used three Qlonerator

pods from 3dMDTM. Each pod must have a good view of the ear. This is difficult

to achieve in practice, as the subject must be very cooperative.
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– Laser scanner-specific issues. The laser scanner which was used to acquire the

UND database is not able to capture the full ear. Areas behind the ear lobe and

all the data that are not directly visible to the sensor are missing. Therefore, the

ear structure is not preserved in its entirety.

– Amount of data. Both the laser scanner and the stereo scanner generate a very

large amount of data, because the scanners are not able to differentiate between

the ear itself and the head. Therefore, in order for our alignment algorithm to

work properly, we segmented the ear manually.

– Intersubject variability. There is a large variation in ear shape and size among

the subjects in the databases on which we have tested our algorithm.

10.5.2 Annotated Ear Model

We constructed an AEM by using the average ear measurements provided by Farkas.

Figure 10.11 depicts our ear model, along with an example mesh, while Fig. 10.3

depicts the ear model being fitted to the data.

After analyzing our ear dataset, we noticed that the deviation from the mean

measurements of the ear was substantial. Farkas based his studies of facial mea-

surements of Caucasian Americans and did not study other races (Fig. 10.12). Some

ear datasets in our collection were out of range of the measurements made by

Farkas. Therefore, when building the ear model we located specific features that are

common in all ears.

The first region of interest is the curvature of the Concha (Fig. 10.13). The Con-
cha has a concave shape that is found in all ears. The second is the Scapha region
which has a distinct curvature that can be used in modeling. The last region is the

Helix whose shape is distinct from all regions of the ear and can help in the align-

ment phase of our algorithm. The Lobule is not used for modeling due to it being

the most elastic portion of the ear.

(a) (b) (c) (d) (e)

Fig. 10.11. (a) The ear model, (b) the aligned data overlaid with the ear model, (c) the ear

model fitted onto the data, (d) the corresponding geometry image, and (e) the corresponding

normal map
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(a) (b) (c)

Fig. 10.12. Ear measurement norms: (a) width of the ear (mean 36.9 mm, std dev 2.4 mm),

(b) length of the ear (mean 62.7 mm, std dev 3.6 mm), and (c) morphological width of the ear

(mean 50.2 mm, std dev 3.9 mm) [270]

Fig. 10.13. The outer ear anatomy

10.5.3 Ear-Specific Algorithm

Since human ears vary in shape and size quite significantly, we address this issue

by not only estimating the rigid alignment of the data to the model, but also by

computing the proper scale. Computing the scale factor is performed independently

of the original alignment.

The scale factor is computed by minimizing the ICP alignment error between

the scaled ear model and the data. The minimization procedure finds the best scale

factors on the X, Y, and Z directions. To speed up the process, we choose to limit

the search space for the scale factors to a set of known values. The minimization

algorithm is ESA. Figure 10.14 depicts several steps from the minimization process.

The distance metrics used are also slightly different than those used for face

recognition. Instead of making use of the UV parameterization of the model, and
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Fig. 10.14. Optimization steps while minimizing the alignment error between the scaled ear

model and ear data

Fig. 10.15. Renderings of good quality ear data

computing the distance between meshes using the geometry images, we use ICP.

We convert the geometry images back to meshes, then compute the ICP registration

between the gallery and the probe, and use the L2 distance returned by the alignment

algorithm as a distance score.

10.5.4 3D Ear Databases

In the Fall of 2005, we acquired data from the ears of 461 subjects for a total of 1,419

datasets (average of three sessions per subject). Three 3dMDTM Qlonerator [229]

sensors were used to capture the back, the inside, and the front of the ear. To the

best of our knowledge, this is the first dataset of 3D polygonal ear data captured

which contains a 180◦ view of the ear (Fig. 10.17). Previous studies [266, 294, 295]

on 3D ear recognition have used range images of profile views of the head.

The UH ear dataset consists of 201 good quality ear datasets (Fig. 10.15) out of

the 1,419 captured. The rest of the ear datasets were unusable due to badly recon-

structed geometry (Fig. 10.16). The number of unique subjects present in the final

database is 110. To date and to the best of our knowledge, this is the only ear dataset

captured with a 3D optical sensor. When compared to ear datasets acquired using

range cameras, there is much more information and curvature with respect to the

outer and inner area of the ear (Fig. 10.17).
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Fig. 10.16. Ear data with noise, holes, and inner ear data missing

(a) (b) (c)

(d) (e) (f)

Fig. 10.17. Comparison of ear data quality from back, side, front views. (a–c) Data obtained

using the multiple 3dMDTM Sensor setup. (d–f ) Range images converted to a 3D mesh

10.5.5 Results

There was no significant difference in performance between the use of normal maps

and geometry images in the case of ear datasets. In fact, the scores had a very high

correlation, meaning that regardless of the fusion strategy, it is not possible to im-

prove the score by combining the scores obtained using normal maps with those

computed using only geometry images.



162 I. Kakadiaris et al.

(a) (b)

Fig. 10.18. (a) CMC curves of the UH ear database and (b) CMC curves of our subset from

the UND ear database

(a) (b) (c)

Fig. 10.19. Failure caused by using the L2 metric after performing ICP on raw data (UH
database): (a) impostor, (b,c) images belonging to the same subject. The distance between

(a) and (b) was smaller than the distance between (b) and (c), therefore causing a failure

Figure 10.18 depicts the CMC curves for both the UH and the subset of UND ear

databases. On the UH database, L2 after aligning geometry images with ICP yielded

100.0% rank 1 recognition, while L2 with ear data yielded 95.6%. As expected, we

had a slightly lower recognition rate when using the L2 metric on raw data. The

reasons are that the data contain noise and the manually segmented ear data are not

perfect. The geometry images created by our deformable model approach, on the

other hand, are much more resilient to such problems.

The results on the UND subset exhibit the same trend: using raw data gives lower

performance (91.3%) than when using geometry images (93.47%). Most failures

are due to lack of inner ear information. By not having a good sampling of inner ear

data, the automatic scaling process cannot find a good alignment between ear model

and ear data. By having a bad alignment, the geometry image that is created after

fitting will be an incorrect representation of the ear’s geometry. A failure arises when
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

Fig. 10.20. Variation of the ear datasets within subject. Most of the variation comes from

the noise introduced by the capture process. Ear data and the corresponding fitted model

belonging to a subject from three sessions: (a–f) UH and (g–l) UND database

a bad geometry image is compared to a good geometry image of the same subject.

Fusing the two methods of ICP surface matching improves the rank 1 recognition

rate to 94.2% (Fig. 10.18b).

10.5.6 Discussion

The performance of 3D ear recognition is directly related to the quality of the input

data. The UND database contains many ear datasets that do not have the 3D descrip-

tion of the full ear lobe, which causes both our approach and ICP to fail occasionally

(Fig. 10.17). The datasets in the UH database have more data available, which al-

lows our method to perform better than ICP (Fig. 10.19). Figure 10.20 depicts the

variation in raw data, and fitted model for a typical subject chosen from the UH and

another subject chosen from the UND database.



164 I. Kakadiaris et al.

10.6 Conclusion

We have presented a general algorithmic solution for 3D object recognition, and

how to adapt it for 3D face and 3D ear recognition. By utilizing a deformable model

we map the 3D geometry information onto a 2D regular grid, thus combining the

rich information of the 3D data with the computational efficiency of 2D data. A

multistage fully automatic alignment algorithm and the advanced wavelet analy-

sis resulted in state-of-the-art performance on the publicly available FRGC v2 face

database. We have also presented encouraging results on our own 3D ear database

and on a subset of the publicly available UND ear database.

The current trend in biometrics is to achieve higher accuracy and robustness by

using multiple biometric modalities. It is becoming increasingly accepted that no

biometric modality can provide 100% verification rate at very low FARs in large

databases. Any hope for achieving such an accuracy figure can only result from

the fusion of multiple modalities. We have observed the same phenomenon in 3D

face recognition at a smaller scale: our verification rates increased significantly by

fusing position data and normal data as well as fusing Haar and Pyramid wavelet

transforms of the above two types of data. We expect that the fusion of 3D face and

3D ear biometric data from same individual will provide good fusion results. To test

this hypothesis a large dataset of 3D face and 3D ear data needs to be acquired. An

additional advantage of such a fusion is that the cost of the 3D capture device can

be amortized over these two modalities.



11 Human Recognition at a Distance in Video by
Integrating Face Profile and Gait

Xiaoli Zhou, Bir Bhanu, and Ju Han

11.1 Introduction

It has been found to be difficult to recognize a person from arbitrary views in reality,

especially when one is walking at a distance in real-world outdoor conditions. For

optimal performance, the system should use as much information as possible from

the observations. A fusion system, which combines face and gait cues from video

sequences, is a potential approach to accomplish the task of human recognition.

The general solution to analyze face and gait video data from arbitrary views

is to estimate 3D models. However, the problem of building reliable 3D models for

nonrigid face with flexible neck and the articulated human body from low-resolution

video data remains a hard one. In recent years, integrated face and gait recognition

approaches without resorting to 3D models have achieved some progress. In [296],

Kale et al. present a gait recognition algorithm and a face recognition algorithm

based on sequential importance sampling. The fusion of frontal face and gait cues

is performed in the single camera scenario. In [297, 298], Shakhnarovich et al.

compute an image-based visual hull from a set of views of four monocular cameras.

It is then used to render virtual canonical views for tracking and recognition. The

gait recognition scheme is based on silhouette extent analysis. Eigenfaces are used

for recognizing frontal face rendered by the visual hull. They discuss the issues

of crossmodal correlation and score transformations for different modalities and

present the fusion of face and gait.

Most current gait recognition algorithms rely on the availability of the side view

of the subject since human gait or the style of walking is best exposed when one

presents a side view to the camera. For face recognition, on the other hand, it is

preferred to have frontal views. These conflicting requirements are easily satisfied

by an individual classifier for face or gait, but pose some challenges when one

attempts to integrate face and gait biometrics in real-world applications. In Kale’s

and Shakhnarovich’s fusion systems [296–298], both use the side view of gait

and the frontal view of face. In Kale’s work [296], the subjects are walking in a

single camera scenario. For face recognition, only the final segment of the database

presents a nearly frontal view of face and it is used as the probe. The galley consists

of static faces for the corresponding subjects. Therefore, they perform still-to-video

face recognition. In Shakhnarovich’s work [297,298], four cameras must be used to

get both the canonical view of gait and the frontal view of face simultaneously.



166 X. Zhou et al.

In this chapter, an innovative system is proposed, aiming at recognizing non-

cooperating individuals at a distance in a single camera scenario. Information from

two biometric sources, face profile and gait, is combined. We use face profile

instead of frontal face in the system since a side view of face is more likely to

be seen than a frontal view of a face when one exposes the best side view of gait to

the camera. It is very natural to integrate information of the side face view and the

side gait view. However, it is difficult to get reliable information of a face profile

directly from a low-resolution video frame for recognition tasks because of limited

resolution. To overcome this problem, we use resolution enhancement algorithms

for face profile analysis. We first reconstruct a high-resolution face profile image

from multiple adjacent low-resolution video frames. The high-resolution face profile

image fuses both the spatial and temporal information present in a video sequence.

The approach relies on the fact that the temporally adjacent frames in a video

sequence, in which one is walking with a side view to the camera, contain slightly

different, but unique, information for face profile [299]. Then, we extract face pro-

file features from the high-resolution face profile images. Finally, a dynamic time

warping (DTW) method [300] is used to match face profiles based on absolute

values of curvature. For gait, we use gait energy image (GEI), a spatiotemporal

compact representation, to characterize human walking properties [301]. Recogni-

tion is carried out based on the direct GEI matching. Face profile cues and gait cues

are integrated by three schemes. The first two are Sum rule and Product rule [302].

The last one is an indexing-verification scheme, which consolidates the accept/reject

decisions of multiple classifiers [303].

This chapter is organized as follows. Section 11.2 presents the overall technical

approach. It explains the construction of a high-resolution face profile image and

describes the generation of GEI. It presents the details of face profile recognition

and gait recognition. It provides a description of the fusion of face profile and gait,

and the classification methods. In Sect. 11.3, a number of dynamic video sequences

are tested. Experimental results are compared and discussed. Finally, Sect. 11.4

concludes this chapter.

11.2 Technical Approach

The overall technical approach is shown in Fig. 11.1. A simple background sub-

traction method [304] is used for human body segmentation from video data. For

each video sequence in the gallery, we construct a high-resolution face profile image

from low-resolution face profile images, and a GEI from the binary silhouette image

sequences. Then, we extract face profile features from each high-resolution profile

image to form face feature gallery. During the testing procedure, each testing video

is processed to generate both the high-resolution face profile image and the GEI. The

face profile features are extracted from the high-resolution face profile image and

compared with face profile features in the gallery using DTW. The GEI is directly
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Fig. 11.1. Technical approach for integrating face profile and gait in video

compared with the GEI templates in the gallery. Finally, different fusion strategies

are used to combine the results of the face profile classifier and the gait classifier to

improve recognition performance.

11.2.1 High-Resolution Image Construction for Face Profile

Multiframe resolution enhancement seeks to construct a single high-resolution

image from multiple low-resolution images. These images must be of the same

object, taken from slightly different angles, but not so much as to change the over-

all appearance of the object in the image. The idea of super-resolution was first

introduced for multiframe image restoration of band-limited signals in 1984 [305].

In the last two decades, different mathematical approaches have been developed. All

of them seek to address the question of how to combine irredundant image informa-

tion present in multiple images.

In this chapter, the original low-resolution face profile images are first localized

and extracted from the segmented human body obtained from multiple video frames.

A human body is divided into two parts according to the proportion of its parts [306]:

from the top of the head to the bottom of the chin, and then from the bottom of the

chin to the bottom of the foot. Human head is defined as the part from the top of the

head to the bottom of the chin. Considering the height of hair and the length of neck,

we obtain the original low-resolution face profile images by cutting the upper 16%

of the segmented human body. Before multiple low-resolution face images are fused

to construct a high-resolution face image using the resolution enhancement method,

they are aligned by affine transformation and motion estimates are computed to

determine pixel displacements between them. Then, an iterative method [307] is

used to construct a high-resolution face profile image from aligned low-resolution

face profile images.
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The Imaging Model

The imaging process, yielding the observed face profile image sequence fk, is mod-

eled by [307]

fk(m, n) = σk(h(Tk(F (x, y))) + ηk(x, y)) (11.1)

where

1. fk is the sensed image of the tracked face profile in the kth frame.

2. F is a high-resolution image of the tracked face profile in a desired recon-

structed view. Finding F is the objective of the super-resolution algorithm.

3. Tk is the 2D geometric transformation from F to fk, determined by the 2D

motion parameters of the tracked face profile in the image plane. Tk is assumed

to be invertible and does not include the decrease in the sampling rate between

F and fk.

4. h is a blurring operator, determined by the point spread function (PSF) of the

sensor. We use a circular averaging filter with radius 2 as PSF.

5. ηk is an additive noise term.

6. σk is a downsampling operator which digitizes and decimates the image into

pixels and quantizes the resulting pixel values.

The receptive field (in F ) of a detector whose output is the pixel fk(m, n) is

uniquely defined by its center (x, y) and its shape. The shape is determined by the

region of the blurring operator h, and by the inverse geometric transformation T−1
k .

Similarly, the center (x, y) is obtained by T−1
k (m, n). The resolution enhancement

algorithm aims to construct a higher resolution image F̂ , which approximates F
as accurately as possible, and surpasses the visual quality of the observed images

in {fk}.

The Super-Resolution Algorithm

The algorithm for creating higher resolution images is iterative. Starting with an

initial guess F (0) for the high-resolution face profile image, the imaging process is

simulated to obtain a set of low-resolution face profile images {f (0)
k }K

k=1

corresponding to the observed input images {fk}K
k=1. If F (0) were the correct

high-resolution face profile image, then the simulated images {f (0)
k }K

k=1 should be

identical to the observed low-resolution face profile image {fk}K
k=1. The difference

images {fk − f
(0)
k }K

k=1 are used to improve the initial guess by “back projecting”

each value in the difference images onto its receptive field in F (0), yielding an

improved high-resolution face profile image F (1). This process is repeated itera-

tively to minimize the error function

e(n) =

√√√√ 1
K

K∑
k=1

‖fk − f
(n)
k ‖2 (11.2)
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The imaging process of fk at the nth iteration is simulated by

f
(n)
k = (Tk(F (n)) ∗ h) ↓ s (11.3)

where ↓ s denotes a downsampling operator by a factor s, and * is the convolution

operator. The iterative update scheme of the high-resolution image is expressed by

F (n+1) = F (n) +
1
K

K∑
k=1

T−1
k (((fk − f

(n)
k ) ↑ s) ∗ p) (11.4)

where K is the number of low-resolution face profile images. ↑ s is an upsampling

operator by a factor s, and p is a “back projection” kernel, determined by h. Tk is

2D motion parameters. The averaging process reduces additive noise.

In our system, we reconstruct a high-resolution face profile image from six

adjacent video frames. We assume that six low-resolution face profile images have

been localized and extracted from adjacent video frames. We then align these

six low-resolution face profile images using affine transformation. Affine trans-

formation works for in-plane, not out of plan rotations of the human face. The

quality of the reconstructed image depends on how well the six profile images are

registered. Finally, we apply the super-resolution algorithm given above to construct

a high-resolution face profile image from the six aligned low-resolution face profile

images. The resolution of the original low-resolution face profile images is 70 × 70
and the resolution of the reconstructed high-resolution face profile image is 140 ×
140. Figure 11.2 shows the six low-resolution face profile images from six adjacent

(a) (b) (c)

(d) (e) (f)

Fig. 11.2. Six low-resolution face profile images resized by using bilinear interpolation (a–f )
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(a) (b) (c)

(d) (e) (f)

Fig. 11.3. The edge images of six low-resolution face profile images shown in Fig. 11.2

Fig. 11.4. The reconstructed high-resolution face profile and its edge image

video frames. For comparison, we resize the six low-resolution face profile images

by using bilinear interpolation. Figure 11.3 shows the corresponding edge images of

six low-resolution face profiles. Figure 11.4 shows the reconstructed high-resolution

face profile image and its edge image. From these figures, we can see that the recon-

structed high-resolution image is better than any of the six low-resolution images. It

is clearly shown in the edge images that the edges of the high-resolution image are

much smoother and more accurate than that of the low-resolution images. Using

the reconstructed high-resolution image, we can extract better features for face

profile matching.

11.2.2 Face Profile Recognition

Face profile is an important aspect for the recognition of faces, which provides a

complementary structure of the face that is not seen in the frontal view. Though

it inherently contains less discriminating power than frontal images, it is relatively
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easy to analyze and more foolproof. Within the last decade, several algorithms have

been proposed for automatic person identification using face profile images. Most

of these algorithms depend on the correct detection of all fiducial points and the

determination of relationships among these fiducial points.

Harmon and Hunt [308] use manually entered profile traces from photographs

of 256 male faces. They locate eight independent fiducials on the profiles and

obtain the ninth fiducial by rotating a point from the chin about the pronasale until

it intersects the profile above the pronasale. Later, Harmon et al. [309] increase

the number of fiducials from nine to eleven, and achieve 96% recognition accuracy

for 112 subjects, using a 17-dimensional feature vector. The most significant prob-

lem with tangency-based techniques is that there is not a line that is bitangent to

the pronasale and chin for profiles with protruding lips [310]. Campos et al. [311]

analyze the profile of the face using scale-space techniques to extract eight fidu-

cials. This technique assumes that there will be nine zero-crossings on the profile,

and this assumption could be invalidated by facial hair particularly moustaches and

the hairline on the forehead. Dariush et al. [312] extract nine fiducials based on the

observation that the curvature of the profile alternates between convex and concave,

with the point of maximal absolute curvature in each segment corresponding to a

fiducial. Akimoto et al. [313] use a template matching approach to find the position

of the same five fiducials used by Galton [314]. The template consisting of approx-

imately 50 line segments is used to represent a generic face profile.

In reality, some profiles are too difficult for all fiducials to be reliably extracted,

so in these cases a feature vector approach based on the same fiducial points of

different face profiles will fail. In this chapter, we use a curvature-based match-

ing approach [300] for recognition, which does not focus on the extraction of

all the fiducial points and the determination of relationship among these fiducial

points [309, 311, 312]. We use the relationship of some fiducial points for their

extraction, but not for an individual recognition. The Gaussian scale-space filter is

first used to smooth the profile extracted from the high-resolution face profile image

and then the curvature of the filtered profile is computed. Using the curvature value,

the fiducial points, including the nasion and throat, can be reliably extracted using

a fast and simple method after pronasale is determined. Finally, a DTW method

is applied to compare the face profile portion from nasion to throat based on the

curvature values.

Face Profile Representation

We apply a canny edge detector to the high-resolution face profile image. After

edge linking and thinning, the profile of a face is extracted as the leftmost points

different from background, which contain fiducial points like nasion, pronasale, and

throat. The outline of a profile is treated as a 1D function, consisting of a set of

points T = (x, y), where x is a row index and y is a column index of a pixel. The

Gaussian scale-space filter is applied to the face profile to eliminate the spatial quan-

tization noise introduced during the digitization process, as well as other types of

high frequency noise. The convolution between Gaussian kernel g(x, σ) and signal
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f(x) depends both on x, the signal’s independent variable, and on σ, the Gaussian’s

standard deviation. It is given by

F (x, σ) = f(x) ⊕ g(x, σ) =
∫ ∞

−∞
f(u)

1
σ
√

2π
e

−(x−u)2

2σ2 du (11.5)

where ⊕ denotes convolution with respect to x. The bigger the σ, the smoother

the F (x, σ). The curve T is parameterized as T (u) = (x(u), y(u)) by the arc

length parameter u. An evolved version of T is Tσ(u) = (X(u, σ), Y (u, σ)), where

X(u, σ) = x(u) ⊕ g(u, σ) and Y (u, σ) = y(u) ⊕ g(u, σ).
Curvature κ on Tσ is computed as

κ(u, σ) =
Xu(u, σ)Yuu(u, σ) − Xuu(u, σ)Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2)
1.5 (11.6)

where the first and second derivatives of X and Y can be computed as

Xu(u, σ) = x(u) ⊕ gu(u, σ) Xuu(u, σ) = x(u) ⊕ guu(u, σ)
Yu(u, σ) = y(u) ⊕ gu(u, σ) Yuu(u, σ) = y(u) ⊕ guu(u, σ)

where gu(u, σ) and guu(u, σ) are the first derivative and the second derivative of

Gaussian kernel.

Since the profiles include the hair and some other parts that are not reliable for

matching, we extract a portion of profile starting from nasion to throat for effective

matching. It is done by finding the fiducial points on the face profile. To localize the

fiducial points, the curvature of a profile is first computed at an initial scale and the

locations, where the local maxima of the absolute values occur, are chosen as corner

candidates. These locations are tracked down and the fiducial points are identified

at lower scales. The initial scale must be large enough to remove noise and small

enough to retain the real corners. Our method has advantages in that it does not

depend on too many parameters and does not require any thresholds. It is also fast

and simple.

We define pronasale as the leftmost point above throat in the middle part of the

profile and nasion as the first point that has local maximum of the absolute values

above pronasale. The method of extracting the nasion and throat points is described

as follows:

1. Compute the curvature of a profile at an initial scale, find local maxima of the

absolute values as corner candidates, and track them down to lower scales.

2. Regard the rightmost point in the candidate set as the throat.

3. Regard the pronasale as one of the two leftmost candidate points in the middle

part of the profile and then identify it using the curvature value around this

point.

4. Assume that there are no candidate points between pronasale and nasion and

identify the first candidate point above the pronasale as nasion.
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Fig. 11.5. The extracted face profile and the absolute values of curvature

Figure 11.5 shows the extracted face profile and the absolute values of curvature.

It is clear that the locations of the fiducial points, including nasion, pronasale, and

throat, have local maxima of the absolute values. Figure 11.6 shows the absolute

values of curvature on face profiles belonging to four different people. We can see

that different face profiles have different patterns of curvature. Therefore, we can use

the absolute values of curvature as the feature to represent a face profile. Curvature

features have some advantages in that they are invariant to rotation, translation, and

uniform scaling.

Face Profile Matching Using Dynamic Time Warping

We use the Dynamic Time Warping (DTW) as the matching method to compute

the similarity of two face profiles based on the absolute values of curvature, which

are used to represent the shapes of face profiles. The DTW is an algorithm to

calculate the optimal score and to find the optimal alignment between two strings.

This method is a much more robust distance measure for time series than Euclidean

distance, allowing similar shapes to match even if they are out of phase in the time

axis [315]. We use the Needleman–Wunsch [316] global alignment algorithm to find

the optimum alignment of two sequences when considering their entire length. For

two strings s[1 . . . n] and t[1 . . . m], we compute D(i, j) for entire sequences, where

i ranges from 1 to m and j ranges from 1 to n. D(i, j) is defined as
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Fig. 11.6. Four examples of curvature features on face profiles

D(i, j) = min{D[i − 1, j − 1] + d(s[j], t[i]),
D[i − 1, j] + gap,

D[i, j − 1] + gap} (11.7)

where d(s[j], t[i]) represents the similarity between two points on face profiles.

Since the face profile is represented by the absolute values of curvature on the pro-

file, d(s[j], t[i]) is calculated by Euclidean distance

d(s[j], t[i]) = ||s[j] − t[i]|| (11.8)

The penalty is defined for both horizontal and vertical gaps. It is small and yet exists

just to control nondiagonal moves. Generally, the penalties should be set to less than

1/10th the maximum of the d(s[j], t[i]). In our method, we use the same constant

penalty for both horizontal and vertical gaps. The maximum of d(s[j], t[i]) is ∼ 5
and the gap penalties are set to 0.5 in our experiments. The final score D(m, n) is

the best score for the alignment.

A dynamic programming matrix is used to visualize the alignment. Figure 11.7

gives an example of DTW of two face profiles from the same person. From the
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Fig. 11.7. The similarity matrix (left) and the dynamic programming matrix (right)

similarity matrix in Fig. 11.7, we can see a light stripe (high similarity values)

approximately down the leading diagonal. From the dynamic programming matrix

in Fig. 11.7, we can see the lowest-cost path between the opposite corners visibly

follows the light stripe, which overlay the path on the similarity matrix. The least

cost is the value in the bottom-right corner of the dynamic programming matrix.

This is the value we would compare between different templates when we are doing

classification. The unknown person is classified to the class which gets the least cost

out of all the costs corresponding to all the classes.

11.2.3 Gait Recognition

In recent years, various techniques have been proposed for human recognition by

gait. These techniques can be divided as model-based and model-free approaches.

In this chapter, we focus on a model-free approach that does not recover a struc-

tural model of human motion. In the following, we provide related work on gait

recognition.

Little and Boyd [317] describe the shape of the human motion with scale-

independent features from moments of the dense optical flow, and recognize

individuals by phase vectors estimated from the feature sequences. Sundaresan et al.

[318] propose a hidden Markov models (HMMs)-based framework for individ-

ual recognition by gait. Huang et al. [319] extend the template matching method

to gait recognition by combining transformation based on canonical analysis and

eigenspace transformation for feature selection. Sarkar et al. [320] directly measure

the similarity between the testing and training sequences by computing the correla-

tion of corresponding time-normalized frame pairs. Collins et al. [321] first extract

key frames from a sequence and then compute the similarity between two sequences

using the normalized correlation.

While some gait recognition approaches [319] extract features from the correla-

tion of all the frames in a walking sequence without considering their order, other

approaches extract features from each frame and compose a feature sequence for the

human walking sequence [317, 320, 321]. During the recognition procedure, these
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approaches either match the statistics collected from the feature sequence, or match

the features between the corresponding pairs of frames in two sequences that are

time-normalized with respect to their cycle lengths. The fundamental assumptions

made here are (1) the order of poses in human walking cycles is the same, i.e.,

limbs move forward and backward in a similar way among normal people, and (2)

differences exist in the phase of poses in a walking cycle, the extend of limbs, and

the shape of the torso, etc. Under these assumptions, it is possible to represent the

spatiotemporal information in a single 2D gait template, called gait energy image
(discussed below), instead of an ordered image sequence.

Gait Frequency and Phase Estimation

Regular human walking can be considered as cyclic motion where human motion

repeats at a stable frequency. Therefore, it is possible to divide the whole gait

sequence into cycles and study them separately. We assume that silhouette extract-

ion has been performed on original human walking sequences, and begin with the

extracted binary silhouette image sequences. The silhouette preprocessing

includes size normalization (proportionally resizing each silhouette image so that

all silhouettes have the same height) and horizontal alignment (centering the upper

half silhouette part with respect to its horizontal centroid). In a preprocessed

silhouette sequence, the time series signal of lower half silhouette part size from

each frame indicates the gait frequency and phase information. We estimate the gait

frequency and phase by maximum entropy spectrum estimation [317] from the time

series signal.

Gait Representation

Given the preprocessed binary gait silhouette image Bt(x, y) at time t in a sequence,

the gray-level gait energy image (GEI) is defined as follows [301]:

G(x, y) =
1
N

N∑
t=1

Bt(x, y) (11.9)

where N is the number of frames in the complete cycle(s) of a silhouette sequence,

t is the frame number of the sequence (moment of time), and x and y are values

in the 2D image coordinate. Figure 11.8 shows the sample silhouette images in a

gait cycle from two people and the right most images are the corresponding GEIs.

As expected, GEI reflects major shapes of silhouettes and their changes over the

gait cycle. It accounts for human walking at different speeds. It is referred as the

gait energy image because (a) each silhouette image is the space-normalized energy

image of human walking at this moment, (b) GEI is the time-normalized accumula-

tive energy image of human walking in the complete cycle(s), and (c) a pixel with

higher intensity value in GEI means that human walking occurs more frequently at

this position (i.e., with higher energy).
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Fig. 11.8. Two examples of normalized and aligned silhouette images. The silhouette images

shown in a row are in a gait cycle. The right most images are the corresponding gait energy

images (GEIs)

GEI has several advantages over the gait representation of binary silhouette

sequence. GEI is not sensitive to incidental silhouette errors in individual frames.

Moreover, with such a 2D template, we do not need to consider the normalized time

moment of each frame, and the incurred errors can be therefore avoided.

Direct GEI Matching

Individuals are recognized by measuring the similarity between the gallery (train-

ing) and probe (testing) templates. Given GEIs of two gait sequences, Gg(x, y) and

Gp(x, y), their distance can be measured by calculating their normalized matching

error

D(Gg, Gp) =

∑
x,y |Gg(x, y) − Gp(x, y)|√∑
x,y Gg(x, y)

∑
x,y Gp(x, y)

, (11.10)

where
∑

x,y |Gg(x, y) − Gp(x, y)| is the matching error between two GEIs,∑
x,y Gg(x, y) and

∑
x,y Gp(x, y) are total energy in two GEIs, respectively. The

unknown person is classified to the class which gets the smallest distance (matching

error) out of all the distances (matching errors) corresponding to all the classes.

11.2.4 Integrating Face Profile and Gait for Recognition at a Distance

Face profile cues and gait cues are integrated by three schemes. Commonly used

classifier combination schemes [302] are obtained based on Bayesian theory, where

the representations are assumed to be conditionally statistically independent. We

employ Sum rule and Product rule in our fusion system, with which the similarity

scores obtained individually from the face profile classifier and the gait classifier are

combined. Before combination of the results of face profile classifier and the results

of gait classifier, it is necessary to map distances obtained from different classifiers

to the same range of values. We use exponential transformation here. Given that the

distance for a probe X are S1, S2, . . . , Sc, we obtain the normalized match scores as
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Ŝi =
exp(−Si)∑c
i=1 exp(−Si)

i = 1, 2, . . . , c (11.11)

After normalization, the match scores of face and gait from the same class are

fused using different fusion methods. Let ŜF
i and ŜG

i be the normalized face match

scores and the normalized gait match scores, respectively. The unknown person is

classified to class k if

R{ŜF
k , ŜG

k } = max R{ŜF
i , ŜG

i } (11.12)

where R{, } means a fusion method. Sum and Product rules [302] are used in our

experiments. Distances representing dissimilarity become match scores represent-

ing similarity by using (11.11), so the unknown person is classified to the class

which gets the largest integrated match score out of all the integrated match scores

corresponding to all the classes.

The last one is an indexing-verification scheme. In a biometric fusion system, a

less accurate, but fast and simple classifier can pass on a smaller set of candidates

to a more accurate, but time-consuming and complicated classifier. In our system,

the face profile classifier works as a filter to pass on a smaller set of candidates to

the next stage of gait classifier. Then, the gait classifier compares similarity among

these candidates based on GEIs. The result of the gait classifier is the result of the

fusion system.

11.3 Experimental Results

11.3.1 Data

The data are obtained by a Sony DCR-VX1000 digital video camera recorder. We

collect 28 video sequences of 14 people walking in the outdoor conditions and

exposing a side view to the camera. The camera operates at about 30 frames s−1.

The resolution of each frame is 720 × 480. The distance between people and the

video camera is about 10 ft. Each of people has two sequences, one for training and

the other one for testing. Each sequence includes one person. Figure 11.9 shows

some video frames of four people.

11.3.2 Experiments

From each sequence, we construct one high-resolution face profile image from

six low-resolution face profile images that are extracted from six adjacent video

frames, and one GEI from a complete walking cycle that includes about 20

video frames. Since there are two sequences for each of 14 people, we have 14

high-resolution face profile images and 14 GEIs in the gallery, and another 14

high-resolution face profile images and 14 GEIs in the probe. The resolution of

low-resolution face profile images is 70 × 70 and the resolution of reconstructed
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Fig. 11.9. Four examples of video sequences

Table 11.1. Experimental results

combination scheme recognition rate

gait (%) face profile (%) integration (%)

no combination 85.7 64.3

Sum rule 100

Product rule 92.9

indexing-verification 92.9

high-resolution face profile images is 140 × 140. The resolution of each GEI is

128 × 88.

Recognition metric is used to evaluate the performance of our method, the

quality of extracted features, and their impact on identification. It is defined as the

ratio of the number of the correctly recognized people to the number of all the peo-

ple. The results for our database are shown in Table 11.1. We can see that 64.3%

people are correctly recognized (5 errors out of 14 persons) by face profile and

85.7% people are correctly recognized by gait (2 errors out of 14 persons), respect-

ively. For the fusion schemes, the best performance is achieved by the Sum rule at

100% accuracy. The Product rule and the indexing-verification scheme obtain the

same recognition rate at 92.9%. When we use the indexing-verification scheme, we

choose the first three matching results of the face profile classifier as candidates.

Then, the gait classifier measures the similarity between the corresponding GEI of

the testing people and the corresponding GEI of the training people in the candidate

list. The unknown person is finally classified as the most similar class among the

candidates.

From Table 11.1, we can see that there are two people who are not correctly

recognized by gait, but when the face profile classifier is integrated, the recognition

rate is improved. It is because gait recognition based on GEI is not only affected by

the walking style of a person, but also by the shape of a human body. Environmental

and clothing changes cause the difference in the shape of the training sequence and
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the testing sequence for the same person. However, the face profiles of these two

people do not change so much in the training and the testing sequences. It shows that

face profile is a useful cue for the fusion system. Figure 11.10 shows the correspond-

ing GEIs of two people who are misclassified by the gait classifier. Figure 11.11

shows the corresponding face profiles of two people who are misclassified by the

gait classifier. Note the difference in the training and testing GEIs in Fig. 11.10 and

Fig. 11.10. GEIs of two people misclassified by the gait classifier. For each person, the train-

ing GEI and the testing GEI are shown for comparison

Training profile Testing profile

(a)

Training profile Testing profile

(b)

Fig. 11.11. Face profile of two people misclassified by the gait classifier. For each person, the

training profile and the testing profile are shown for comparison
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the similarity in the training and testing face profiles in Fig. 11.11. Since the face

profile classifier is comparatively sensitive to the variation of facial expression and

noise, the face profile classifier cannot get a good recognition rate by itself. When

the gait classifier is combined with the face profile classifier, the better performance

is achieved.

From the experiments, we can see that the fusion system using face profile and

gait is promising. The fusion system has better performance than either of the indi-

vidual classifier. It shows that our fusion system is relatively robust. Although the

experiments are only done on a small database, our system has the potential since

it integrates cues of face profile and cues of gait reasonably, which are independent

biometrics.

11.4 Conclusions

This chapter introduces a video-based system combining face profile and gait for

human recognition in a single camera scenario. For optimal face profile recogni-

tion, we extract face profile features from a high-resolution face profile image con-

structed from multiple video frames instead of a low-resolution face profile images

directly obtained from a single video frame. For gait recognition, we use GEI, a

spatiotemporal compact representation to characterize human walking properties.

Serval schemes are considered for fusion of face profile and gait. The experimental

results show that the integration of information from face profile and gait is effective

for individual recognition in video. The performance improvement is archived when

appropriate fusion rules are used. The idea of constructing the high-resolution face

profile image from multiple video frames and generating the GEI is promising for

human recognition in video.

Several issues that concern real-world applications require further research in the

future. These include the extraction of accurate face profile from video frames in a

crowded surveillance application, extraction of reliable silhouettes of moving peo-

ple in the presence of environmental and clothing changes, and real-time operation

of the fusion system. Moreover, for face profile recognition, the outer contour of the

side face is sensitive to local distortion and noise. In our recent work [322, 323],

we have used the side face, which includes entire side views of eye, nose, and

mouth (discarding facial hair). Since it possesses both the shape and the intensity

information, it is found to have more discriminating power for recognition than a

face profile.
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12.1 Introduction

Biometrics is the science of establishing the identity of an individual based on

the inherent physical or behavioral traits associated with the person [324–326].

Biometric systems utilize fingerprints, iris, face, hand geometry, palmprint, finger

vein structure, gait, voice, signature, keyboard typing pattern, etc. in order to

recognize a person (Fig. 12.1). A typical biometric system operates by capturing

the biometric trait of a person via an appropriately designed acquisition module and

comparing the recorded trait with the biometric samples (or templates) in a data-

base in order to determine the identity of the person (identification) or to validate

a claimed identity (verification). For example, a face biometric system captures the

face image of an individual, extracts a feature set from the segmented face, compares

this feature set against the templates stored in the database and renders a decision

regarding the identity of the individual. Thus, a generic biometric system may be

viewed as a pattern recognition system in which the raw biometric data (or signal)

constitutes the input pattern that is assigned a class label [327]. In an identification

system, the class label pertains to the identity of the individual while in a verifica-

tion system the class label is a match (genuine) or a nonmatch (impostor). In both

modes of operation, a reject label is emitted when the system is unable to determine

a valid class.

A generic biometric system has four important modules (a) the sensor module

which captures the biometric trait1 in the form of raw data; (b) the feature extraction

module which processes the data to extract a feature set that is a compact represen-

tation of the trait; (c) the matching module which employs a matcher or a classifier

to compare the extracted feature set with the templates residing in the database to

generate match scores; and (d) the decision module which uses the matching scores

to either determine an identity or validate a claimed identity.

The need for establishing identity in a reliable manner has spurred active

research in the field of biometrics [328]. The deployment of biometric systems in

border security programs (e.g., US-VISIT2), criminal investigations (e.g., IAFIS3),

1 The terms biometric trait, biometric modality, and biometric indicator are used inter-

changeably in this chapter.
2 United States Visitor and Immigrant Status Indicator Technology.
3 Integrated Automated Fingerprint Identification System.
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Fig. 12.1. Examples of biometric traits that can be used for authenticating an individual’s

identity

logical access points (e.g., computer login) and surveillance applications (e.g., face

recognition in public spaces) further underscores the importance of designing and

implementing large-scale authentication systems that can consistently render the

correct decision under various operational scenarios. Furthermore, as the number

of enrolled subjects increases over time, it is imperative that the matching accuracy

of these systems is not compromised. Indeed, the problem of biometric recognition

may be viewed as a Grand Challenge, given the expectations of high matching accu-

racy, ease of usability, and efficient scalability in a variety of applications accessed

by different segments of the general population [329].

Most biometric systems that are presently in use, typically use a single biometric

trait to establish identity (i.e., they are unibiometric systems). For example, the

Schiphol Privium scheme at Amsterdam’s Schipol airport employs iris scan smart

cards to speed up the immigration process; the Ben Gurion International Airport at

Tel Aviv employs automated hand geometry-based identification kiosks to enable

Israeli citizens and frequent international travelers to rapidly negotiate the passport

inspection process; some financial institutions in Japan have installed palm-vein

authentication systems in their ATMs to validate the identity of a customer conduct-

ing a transaction; in Disney World, Orlando, the fingerprint information of season

pass holders is used to ensure that multiple individuals do not fraudulently use a
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single pass; customers phoning in to schedule product shipments through Union

Pacific’s railcar system are authenticated by a speaker recognition software. With

the proliferation of biometric-based solutions in civilian and law enforcement appli-

cations, it is important that the vulnerabilities and limitations of these systems are

clearly understood. Some of the challenges commonly encountered by biometric

systems are listed below.

1. Noise in sensed data. The biometric data being presented to the system may be

contaminated by noise due to imperfect acquisition conditions or subtle varia-

tions in the biometric itself. For example, a scar can change a subject’s finger-

print while the common cold can alter the voice characteristics of a speaker.

Similarly, unfavorable illumination conditions may significantly affect the face

and iris images acquired from an individual. Noisy data can result in an individ-

ual being incorrectly labeled as an impostor thereby increasing the false reject

rate (FRR) of the system.

2. Non-universality. The biometric system may not be able to acquire meaning-

ful biometric data from a subset of individuals resulting in a failure-to-enroll

(FTE) error. For example, a fingerprint system may fail to image the friction

ridge structure of some individuals due to the poor quality of their fingerprints.

Similarly, an iris recognition system may be unable to obtain the iris informa-

tion of a subject with long eyelashes, drooping eyelids or certain pathologi-

cal conditions of the eye.4 Exception processing will be necessary in order to

accommodate such users into the authentication system.

3. Upper bound on identification accuracy. The matching performance of a unibio-

metric system cannot be continuously improved by tuning the feature extraction

and matching modules. There is an implicit upper bound on the number of dis-

tinguishable patterns (i.e., the number of distinct biometric feature sets) that can

be represented using a template. The capacity of a template is constrained by the

variations observed in the feature set of each subject (i.e., intraclass variations)

and the variations between feature sets of different subjects (i.e., interclass vari-

ations). Table 12.1 lists the error rates associated with four biometric modalities

– fingerprints, face, voice, iris – as suggested by recent public tests. These sta-

tistics suggest that there is a tremendous scope for performance improvement

especially in the context of large-scale authentication systems (also see [330]).

4. Spoof attacks. Behavioral traits such as voice [331] and signature [332] are vul-

nerable to spoof attacks by an impostor attempting to mimic the traits corre-

sponding to legitimately enrolled subjects. Physical traits such as fingerprints

can also be spoofed by inscribing ridge-like structures on synthetic material

such as gelatine and play-doh [333,334]. Targeted spoof attacks can undermine

the security afforded by the biometric system and, consequently, mitigate its

benefits [335].

Some of the limitations of a unibiometric system can be addressed by designing

a system that consolidates multiple sources of biometric information. This can be

4 http://news.bbc.co.uk/2/hi/uk news/politics/3693375.stm.
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Table 12.1. The false accept and false reject error rates (FAR and FRR) associated with the

fingerprint, face, voice, and iris modalities

biometric test test conditions false false

trait reject accept

rate (%) rate (%)

fingerprint FVC 2004 [339] exaggerated skin 2 2

distortion, rotation

fingerprint FpVTE 2003 [340] US Government 0.1 1

operational data

face FRVT 2002 [341] varied lighting, 10 1

outdoor/indoor, time

voice NIST 2004 [342] text independent, 5–10 2–5

multilingual

iris ITIRT 2005 [343] indoor environment, 0.99 0.94

multiple visits

The accuracy estimates of biometric systems depend on a number of test conditions includ-

ing the sensor employed, acquisition protocol used, subject disposition, number of subjects,

number of biometric samples per subject, demographic profile of test subjects, subject habit-

uation, time lapse between data acquisition, etc.

accomplished by fusing, for example, multiple traits of an individual, or multiple

feature extraction and matching algorithms operating on the same biometric. Such

systems, known as multibiometric systems [336–338], can improve the matching

accuracy of a biometric system while increasing population coverage and deterring

spoof attacks. In this chapter, the various sources of biometric information that can

be fused as well as the different levels of fusion that are possible are discussed.

12.2 Multibiometric Systems

Evidence accumulation and information fusion is an active area of research in seve-

ral different fields including weather forecasting [344], UAV coordination [345],

object tracking [346], robot navigation [347], and land-mine detection [348]. The

notion of problem solving by combining the decisions rendered by multiple “exp-

erts” (or algorithms) in a cooperative framework has received substantial attention

in the literature [349–358]. Indeed, information fusion has a long history and the

theory of multiple classifier systems (MCS) has been rigorously studied [359–362].

In the realm of biometrics, the consolidation of evidence presented by multi-

ple biometric sources is an effective way of enhancing the recognition accuracy of

an authentication system. For example, the Integrated Automated Fingerprint Iden-

tification System (IAFIS) maintained by the FBI integrates the information pre-

sented by multiple fingers to determine a match in the master file. Some of the

earliest multimodal5 biometric systems reported in the literature combined the face

5 See Sect. 12.3 for a description of the terminology.
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(image/video) and voice (audio) traits of individuals [363, 364]. Besides enhancing

matching accuracy, the other advantages of multibiometric systems over traditional

unibiometric systems are enumerated below [338].

1. Multibiometric systems address the issue of nonuniversality (i.e., limited popu-

lation coverage) encountered by unibiometric systems. If a subject’s dry fin-

ger prevents her from successfully enrolling into a fingerprint system, then the

availability of another biometric trait, say iris, can aid in the inclusion of the

individual in the biometric system. A certain degree of flexibility is achieved

when a user enrolls into the system using several different traits (e.g., face,

voice, fingerprint, iris, hand) while only a subset of these traits (e.g., face and

voice) is requested during authentication based on the nature of the application

under consideration and the convenience of the user.

2. Multibiometric systems can facilitate the filtering or indexing of large-scale

biometric databases. For example, in a bimodal system consisting of face and

fingerprint, the face feature set may be used to compute an index value for ex-

tracting a candidate list of potential identities from a large database of subjects.

The fingerprint modality can then determine the final identity from this limited

candidate list.

3. It becomes increasingly difficult (if not impossible) for an impostor to spoof

multiple biometric traits of a legitimately enrolled individual. If each subsystem

indicates the probability that a particular trait is a “spoof,” then appropriate

fusion schemes can be employed to determine if the user, in fact, is an impostor.

Furthermore, by asking the user to present a random subset of traits at the point

of acquisition, a multibiometric system facilitates a challenge–response type of

mechanism, thereby ensuring that the system is interacting with a live user. Note

that a challenge–response mechanism can be initiated in unibiometric systems

also (e.g., system prompts “Please say 1-2-5-7,” “Blink twice and move your

eyes to the right,” “Change your facial expression by smiling,” etc.).

4. Multibiometric systems also effectively address the problem of noisy data.

When the biometric signal acquired from a single trait is corrupted with noise,

the availability of other (less noisy) traits may aid in the reliable determina-

tion of identity. Some systems take into account the quality of the individual

biometric signals during the fusion process. This is especially important when

recognition has to take place in adverse conditions where certain biometric traits

cannot be reliably extracted. For example, in the presence of ambient acoustic

noise, when an individual’s voice characteristics cannot be accurately measured,

the facial characteristics may be used by the multibiometric system to perform

authentication. Estimating the quality of the acquired data is in itself a chal-

lenging problem but, when appropriately done, can reap significant benefits in

a multibiometric system.

5. These systems also help in the continuous monitoring or tracking of an indi-

vidual in situations when a single trait is not sufficient. Consider a biometric
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system that uses a 2D camera to procure the face and gait information of a

person walking down a crowded aisle. Depending upon the distance and pose

of the subject with respect to the camera, both these characteristics may or may

not be simultaneously available. Therefore, either (or both) of these traits can

be used depending upon the location of the individual with respect to the acqui-

sition system thereby permitting the continuous monitoring of the individual.

6. A multibiometric system may also be viewed as a fault tolerant system which

continues to operate even when certain biometric sources become unreliable

due to sensor or software malfunction, or deliberate user manipulation. The no-

tion of fault tolerance is especially useful in large-scale authentication systems

involving a large number of subjects (such as a border control application).

The design of a multibiometric system is defined by several different factors

including (a) the human–computer interface (HCI) used to acquire biometric infor-

mation from an individual6; (b) the tradeoff between the additional cost incurred in

introducing multiple biometric sources and the perceived improvement in match-

ing accuracy; (c) the sources of biometric information used to provide evidence;

(d) the level of fusion, i.e., the type of information to be fused; and (e) the fusion

methodology adopted.

12.3 Taxonomy of Multibiometric Systems

A multibiometric system relies on the evidence presented by multiple sources of

biometric information. Based on the nature of these sources, a multibiometric sys-

tem can be classified into one of the following six categories [338]: multisensor,

multialgorithm, multi-instance, multisample, multimodal, and hybrid.

1. Multisensor systems. Multisensor systems employ multiple sensors to capture a

single biometric trait of an individual. For example, a face recognition system

may deploy multiple 2D cameras to acquire the face image of a subject [365];

an infrared sensor may be used in conjunction with a visible-light sensor to

acquire the subsurface information of a person’s face [366–368]; a multispectral

camera may be used to acquire images of the iris, face or finger [369, 370]; or

an optical as well as a capacitive sensor may be used to image the fingerprint

of a subject [371]. The use of multiple sensors, in some instances, can result in

the acquisition of complementary information that can enhance the recognition

ability of the system. For example, based on the nature of illumination due

to ambient lighting, the infrared and visible-light images of a person’s face can

present different levels of information resulting in enhanced matching accuracy.

Similarly, the performance of a 2D face matching system can be improved by

utilizing the shape information presented by 3D range images.

2. Multialgorithm systems. In some cases, invoking multiple feature extraction

and/or matching algorithms on the same biometric data can result in improved

6 This is an important consideration for multimodal and multiunit systems (see Sect. 12.3).
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matching performance. Multialgorithm systems consolidate the output of mul-

tiple feature extraction algorithms, or that of multiple matchers operating on the

same feature set. These systems do not necessitate the deployment of new sen-

sors and, hence, are cost-effective compared to other types of multibiometric

systems. But on the other hand, the introduction of new feature extraction and

matching modules can increase the computational complexity of these systems.

Ross et al. [372] describe a fingerprint recognition system that utilizes minutiae

as well as texture information to represent and match fingerprint images. The

inclusion of the texture-based algorithm introduces additional processing time

associated with the application of Gabor filters on the input fingerprint image.

However, the performance of the hybrid matcher is shown to exceed that of the

individual matchers. Lu et al. [373] discuss a face recognition system that com-

bines three different feature extraction schemes (principal component analysis

(PCA), independent component analysis (ICA), and linear discriminant analy-

sis (LDA)). The authors postulate that the use of different feature sets makes

the system robust to a variety of intraclass variations normally associated with

the face biometric. Experimental results indicate that combining multiple face

classifiers can enhance the identification rate of the biometric system.

3. Multi-instance systems. These systems use multiple instances of the same body

trait and have also been referred to as multiunit systems in the literature. For ex-

ample, the left and right index fingers, or the left and right irises of an individual,

may be used to verify an individual’s identity [374, 375]. The US-VISIT bor-

der security program presently uses the left- and right-index fingers of visitors

to validate their travel documents at the port of entry. FBI’s IAFIS combines

the evidence of all ten fingers to determine a matching identity in the data-

base. These systems can be cost-effective if a single sensor is used to acquire

the multiunit data in a sequential fashion (e.g., US-VISIT). However, in some

instances, it may be desirable to obtain the multiunit data simultaneously

(e.g., IAFIS) thereby demanding the design of an effective (and possibly more

expensive) acquisition device.

4. Multisample systems. A single sensor may be used to acquire multiple samples

of the same biometric trait in order to account for the variations that can occur

in the trait, or to obtain a more complete representation of the underlying trait.

A face system, for example, may capture (and store) the frontal profile of a per-

son’s face along with the left and right profiles in order to account for variations

in the facial pose. Similarly, a fingerprint system equipped with a small size

sensor may acquire multiple dab prints of an individual’s finger in order to ob-

tain images of various regions of the fingerprint. A mosaicing scheme may then

be used to stitch the multiple impressions and create a composite image. One of

the key issues in a multisample system is determining the number of samples

that have to be acquired from an individual. It is important that the procured

samples represent the variability as well as the typicality of the individual’s

biometric data. To this end, the desired relationship between the samples has to

be established before-hand in order to optimize the benefits of the integration
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strategy. For example, a face recognition system utilizing both the frontal- and

side-profile images of an individual may stipulate that the side-profile image

should be a three-quarter view of the face [376, 377]. Alternately, given a set

of biometric samples, the system should be able to automatically select the

“optimal” subset that would best represent the individual’s variability. Uludag

et al. [378] discuss two such schemes in the context of fingerprint recognition.

The first method, called DEND, employs a clustering strategy to choose a tem-

plate set that best represents the intraclass variations, while the second method,

called MDIST, selects templates that exhibit maximum similarity with the rest

of the impressions.

5. Multimodal systems. Multimodal systems establish identity based on the evi-

dence of multiple biometric traits. For example, some of the earliest multimodal

biometric systems utilized face and voice features to establish the identity of an

individual [364, 379, 380]. Physically uncorrelated traits (e.g., fingerprint and

iris) are expected to result in better improvement in performance than correlated

traits (e.g., voice and lip movement). The cost of deploying these systems is

substantially more due to the requirement of new sensors and, consequently,

the development of appropriate user interfaces. The identification accuracy can

be significantly improved by utilizing an increasing number of traits although

the curse-of-dimensionality phenomenon would impose a bound on this num-

ber. The curse-of-dimensionality limits the number of attributes (or features)

used in a pattern classification system when only a small number of training

samples is available [327]. The number of traits used in a specific application

will also be restricted by practical considerations such as the cost of deploy-

ment, enrollment time, throughput time, expected error rate, user habituation

issues, etc.

6. Hybrid systems. Chang et al. [381] use the term hybrid to describe systems that

integrate a subset of the five scenarios discussed above. For example, Brunelli

et al. [364] discuss an arrangement in which two speaker recognition algorithms

are combined with three face recognition algorithms at the match score and rank

levels via a HyperBF network. Thus, the system is multialgorithmic as well as

multimodal in its design. Similarly, the NIST BSSR1 dataset [382] has match

scores pertaining to two different face matchers operating on the frontal face

image of an individual (multialgorithm), and a fingerprint matcher operating on

the left- and right-index fingers of the same individual (multi-instance).

It is also possible to combine biometric information with nonbiometric entities

such as tokens in order to enhance the matching performance. For example, [383]

discuss a dual factor authenticator that combines a pseudorandom number (present

in a token) with a facial feature set in order to produce a set of user-specific compact

codes known as BioCode. The pseudorandom number and the facial feature sets

are fixed in length and an iterated inner product is used to generate the BioCode.

When an individual’s biometric information is suspected to be compromised, then

the token containing the random data is replaced, thereby revoking the previous

authenticator. The use of biometric and nonbiometric authenticators in tandem is a
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powerful way of enhancing security. However, some of the inconveniences associated

with traditional authenticators remain (such as “Where did I leave my token?”).

Another category of multibiometric systems combine primary biometric iden-

tifiers (such as face and fingerprint) with soft biometric attributes (such as gender,

height, weight, eye color, etc.). Soft biometric traits cannot be used to distinguish

individuals reliably since the same attribute is likely to be shared by several differ-

ent people in the target population. However, when used in conjunction with primary

biometric traits, the performance of the authentication system can be significantly

enhanced [384]. Soft biometric attributes also help in filtering (or indexing) large

biometric databases by limiting the number of entries to be searched in the data-

base. For example, if it is determined (automatically or manually) that the subject

is an “Asian Male,” then the system can constrain its search to only those identities

in the database labeled with these attributes. Alternately, soft biometric traits can be

used in surveillance applications to decide if at all primary biometric information

has to be acquired from a certain individual. Automated techniques to estimate soft

biometric characteristics is an ongoing area of research and is likely to benefit law

enforcement and border control biometric applications.

12.4 Levels of Fusion

In a biometric system, the amount of available information gets compressed as

one progresses along the various modules of the system. Based on the type of

information available in a certain module, different levels of fusion can be defined.

Sanderson and Paliwal [385] categorize the various levels of fusion into two broad

categories: preclassification or fusion before matching and postclassification or

fusion after matching (see Fig. 12.2). Such a categorization is necessary since the

amount of information available for fusion reduces drastically once the matcher has

been invoked. Preclassification fusion schemes typically require the development of

new matching techniques (since the matchers used by the individual sources may

no longer be relevant) thereby introducing additional challenges. Preclassification

schemes include fusion at the sensor (or raw data) and the feature levels while post-

classification schemes include fusion at the match score, rank, and decision levels.

A brief description of each of these fusion levels is presented in this section.

12.4.1 Sensor-Level Fusion

The raw biometric data (e.g., a face image) acquired from an individual represents

the richest source of information although it is expected to be contaminated by noise

(e.g., nonuniform illumination, background clutter, etc.). Sensor-level fusion refers

to the consolidation of (a) raw data obtained using multiple sensors or (b) multi-

ple snapshots of a biometric using a single sensor. Mosaicing multiple impressions

of the same finger is a good example of fusion at this level. Jain and Ross [386]

discuss a mosaicing scheme that creates a composite fingerprint image from the

evidence presented by multiple dab prints. The algorithm uses the minutiae points
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Fig. 12.2. Fusion can be accomplished at various levels in a biometric system. Most multibio-

metric systems fuse information at the match score level or the decision level. More recently

researchers have begun to fuse information at the sensor and feature levels. In biometric

systems operating in the identification mode, fusion can be done at the rank level

to first approximately register the two images using a simple affine transformation.

The iterative closest point (ICP) algorithm is then used to register the ridge inf-

ormation corresponding to the two images after applying a low-pass filter to the

individual images and normalizing their histograms. The normalization ensures that

the pixel intensities of the individual dab prints are comparable. Blending is accom-

plished by merely concatenating the two registered images. The performance using

the mosaiced image templates was shown to exceed that of the individual dab print

templates.

Ratha et al. [387] describe a mosaicing scheme to integrate multiple snapshots

of a fingerprint as the user rolls the finger on the surface of the sensor. Thus, a

specific temporal order is imposed on the image frames when constructing the com-

posite image. The authors investigate five different blending algorithms to construct

a composite mosaiced image from the individual gray-scale images. They evaluate

the efficacy of these five schemes by observing the size of the mosaiced print and

its quality (in terms of the number of valid minutiae points detected).

Zhang et al. [388] employ a two-stage process to register the image slices obt-

ained from a sweep-based fingerprint sensor. In the first stage, the minimum mean

absolute error criterion is used to coarsely align a pair of image slices. In the next

stage, a phase correlation scheme is used to refine the registration parameters. Choi

et al. [389] propose the use of a novel enrollment scheme to capture a sequence of

fingerprint images. Their scheme requires the finger to roll and slide horizontally on

the sensing surface of the device. They use a block matching algorithm to account

for local distortions between successive image pairs. A two-pass mesh-warping alg-

orithm based on cubic splines is then used to fine align the images before stitching

them into a single mosaiced entity. Ross et al. [390] use a thin-plate spline function
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to register two impressions of a subject’s finger prior to blending them using a sim-

ple averaging scheme. Rather than operating on the gray-scale fingerprint image,

the proposed mosaicing algorithm uses the enhanced fingerprint image to perform

blending.

Mosaicing has also been attempted by researchers in face recognition where

multiple 2D images representing different poses are stitched to generate a single

image. Yang et al. [391] propose an algorithm to create panoramic face mosaics.

Their acquisition system consists of five cameras that simultaneously obtain five

different views of a subject’s face. In order to determine the corresponding points

in multiple face views, the authors place ten colored markers on the face. Based on

these control points, their algorithm uses a sequence of fast linear transformations

on component images to generate a face mosaic. Finally, a local smoothing process

is carried out to smooth the mosaiced image. Two different schemes were used to

represent the panoramic image: one in the spatial domain and the other in the fre-

quency domain. The frequency domain representation resulted in an identification

accuracy of 97.46% while the spatial domain representation provided 93.21% accu-

racy on a database of 12 individuals.

Liu and Chen [392] propose a face mosaicing technique that uses a statistical

model to represent the mosaic. Given a sequence of face images captured under an

orthographic camera model, each frame is unwrapped onto a certain portion of the

surface of a sphere via a spherical projection. A minimization procedure using the

Levenberg–Marquardt algorithm is employed to optimize the distance between an

unwrapped image and the sphere. The representational (statistical) model comprises

of a mean image and a number of eigen-images. The novelty of this technique is

(a) the use of spherical projection, as opposed to cylindrical projection, which works

better when there is head motion in both the horizontal and vertical directions and

(b) the computation of a representational model using both the mean image and

the eigen-images rather than a single template image. In [393], the authors propose

another algorithm in which the human head is approximated with a 3D ellipsoidal

model. The face, at a certain pose, is viewed as a 2D projection of this 3D ellipsoid.

All 2D face images of a subject are projected onto this ellipsoid via geometrical

mapping to form a texture map which is represented by an array of local patches.

Matching is accomplished by adopting a probabilistic model to compute the distance

of patches from an input face image. The authors report an identification accuracy

of 90% on the CMU PIE database [394].

Singh et al. [395] present a face mosaicing technique that uses terrain transform

to align multiple face images of a subject. Multiresolution splining is then used to

blend the registered face images into a single entity. The authors state that the use of

multiresolution splining during image mosaicing ensures that the biometric features

of the face are not perturbed thereby protecting the salient biometric features in the

mosaiced image. While 2D face mosaicing has been shown to enhance the matching

accuracy of a face recognition system, more research is needed in this direction to

establish the pros and cons of mosaicing over other fusion methods (such as score-

level fusion, for example).
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It is also possible to combine the 2D texture of a person’s face with the cor-

responding 3D scan (i.e., the range image) in order to create a 3D texture. Two

such 3D surfaces can be compared by first aligning them using landmark points,

such as automatically detected high curvature points, and then comparing the texture

associated with local patches. The local patches are usually defined using triangu-

lar meshes. Hsu [396] describes a face modeling algorithm that uses the 2D and

3D images of a person’s face obtained during enrollment to modify a generic 3D

face model and derive a user-specific 3D model. The generic 3D model is based on

Waters’ animation model [397] and contains 256 vertices and 441 triangular facets

(for one-half of the face) that define various facial attributes. During the enrollment

stage, the 2D and 3D images of a person’s face are acquired using a Minolta Vivid

700 digitizer that generates a registered 200× 200 range map and a 400× 400 color

image. A global alignment procedure is employed to approximately align the facial

measurements of the user with the generic 3D model. A local alignment scheme is

then invoked that perturbs features such as the eyes, nose, mouth, chin, and face

boundary of the generic 3D model so that they fit the actual facial measurements

of the individual. Next, a combination of displacement propagation and 2.5D active

contours is used to smooth the face model and to refine the local features present

in the model resulting in a user-specific 3D representation of the face. The avail-

ability of this model permits the generation of new (previously unseen) 2D images

of a person’s face (e.g., at different poses, illumination, head-tilt, etc.) without ac-

tually employing a scanner to capture such images. Hsu [396] uses this approach

to compare 2D images of a person’s face acquired during authentication with the

user-specific 3D model residing in the template database.

12.4.2 Feature-Level Fusion

In feature-level fusion, the feature sets originating from multiple biometric algo-

rithms are consolidated into a single feature set by the application of appropriate

feature normalization, transformation, and reduction schemes. The primary benefit

of feature-level fusion is the detection of correlated feature values generated by dif-

ferent biometric algorithms and, in the process, identifying a salient set of features

that can improve recognition accuracy. Eliciting this feature set typically requires

the use of dimensionality reduction methods [398,399] and, therefore, feature-level

fusion assumes the availability of a large number of training data. Also, the feature

sets being fused are typically expected to reside in commensurate vector space in

order to permit the application of a suitable matching technique upon consolidating

the feature sets.

Feature-level fusion is challenging for the following reasons:

1. The relationship between the feature spaces of different biometric systems may

not be known.

2. The feature sets of multiple modalities may be incompatible. For example, the

minutiae set of fingerprints and the eigen-coefficients of face are irreconcil-

able. One is a variable length feature set (i.e., it varies across images) whose
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individual values parameterize a minutia point; the other is a fixed length fea-

ture set (i.e., all images are represented by a fixed number of eigen-coefficients)

whose individual values are scalar entities.

3. If the two feature sets are fixed length feature vectors, then one could consider

concatenating them to generate a new feature set. However, concatenating two

feature vectors might lead to the curse-of-dimensionality problem [400] where

increasing the number of features might actually degrade the system perfor-

mance especially in the presence of small number of training samples. Although

the curse-of-dimensionality is a well-known problem in pattern recognition, it

is particularly pronounced in biometric applications because of the time, effort

and cost required to collect large amounts of biometric (training) data.

4. Most commercial biometric systems do not provide access to the feature sets

used in their products. Hence, very few biometric researchers have focused on

integration at the feature level and most of them generally prefer fusion schemes

that use match scores or decision labels.

If the length of each of the two feature vectors to be consolidated is fixed across

all users, then a feature concatenation scheme followed by a dimensionality re-

duction procedure may be adopted. Let X = {x1, x2, . . . , xm} and Y = {y1,
y2, . . . , yn} denote two feature vectors (X ∈ Rm and Y ∈ Rn) representing the

information extracted from two different biometric sources. The objective is to fuse

these two feature sets in order to yield a new feature vector, Z, that would better

represent an individual. The vector Z of dimensionality k, k < (m + n), can be

generated by first concatenating vectors X and Y, and then performing feature sel-

ection or feature transformation on the resultant feature vector in order to reduce

its dimensionality. The key stages of such an approach are described below (also

see Fig. 12.3).

Feature Normalization

The individual feature values of vectors X = {x1, x2, . . . , xm} and Y = {y1,
y2, . . . , yn} may exhibit significant differences in their range as well as form (i.e.,

distribution). Concatenating such diverse feature values will not be appropriate in

many cases. For example, if the xis are in the range [0, 100] while the yis are in

the range [0, 1], then the distance between two concatenated feature vectors will be

more sensitive to the xis than the yis. The goal of feature normalization is to modify

the location (mean) and scale (variance) of the features values via a transformation

function in order to map them into a common domain. Adopting an appropriate

normalization scheme also helps address the problem of outliers in feature values.

While a variety of normalization schemes can be used, two simple schemes are

discussed here: the min–max and median normalization schemes.

Let x and x′ denote a feature value before and after normalization, respectively.

The min–max technique computes x′ as

x′ =
x − min(Fx)

max(Fx) − min(Fx)
, (12.1)
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where Fx is the function which generates x, and min(Fx) and max(Fx) represent

the minimum and maximum of all possible x values that will be observed, respec-

tively. The min–max technique is effective when the minimum and the maximum

values of the component feature values are known beforehand. In cases where such

information is not available, an estimate of these parameters has to be obtained from

the available set of training data. The estimate may be affected by the presence of

outliers in the training data and this makes min–max normalization sensitive to out-

liers. The median normalization scheme, on the other hand, is relatively robust to

the presence of noise in the training data. In this case, x′ is computed as

x′ =
x − median(Fx)

median(| (x − median(Fx)) |) . (12.2)

The denominator is known as the median absolute deviation (MAD) and is an

estimate of the scale parameter of the feature value. Although, this normalization

scheme is relatively insensitive to outliers, it has a low efficiency compared to the

mean and standard deviation estimators. Normalizing the feature values via any

of these techniques results in modified feature vectors X′ = {x′
1, x

′
2, . . . x

′
m} and

Y′ = {y′
1, y

′
2, . . . y

′
n}. Feature normalization may not be necessary in cases where

the feature values pertaining to multiple sources are already comparable.

Feature Selection or Transformation

Concatenating the two feature vectors, X′ and Y′, results in a new feature vector,

Z′ = {x′
1, x

′
2, . . . x

′
m, y′

1, y
′
2, . . . y

′
n}, Z′ ∈ Rm+n. The curse-of-dimensionality

dictates that the new vector of dimensionality (m + n) need not necessarily result

in an improved matching performance compared to that obtained by X′ and Y′

alone. The feature selection process is a dimensionality reduction scheme that en-

tails choosing a minimal feature set of size k, k < (m + n), such that a criterion

(objective) function applied to the training set of feature vectors is optimized. There

are several feature selection algorithms in the literature, and any one of these could

be used to reduce the dimensionality of the feature set Z′. Examples include seq-

uential forward selection (SFS), sequential backward selection (SBS), sequential

forward floating search (SFFS), sequential backward floating search (SBFS), “plus

l take away r” and branch-and-bound search (see [399, 401] for details). Feature

selection techniques rely on an appropriately formulated criterion function to elicit

the optimal subset of features from a larger feature set. In the case of a biometric

system, this criterion function could be the equal error rate (EER); the d-prime mea-

sure; the area of overlap between genuine and impostor training scores; the average

GAR at predetermined FAR values in the ROC/DET curves corresponding to the

training set; or the area under the ROC curve (AUC).

Dimensionality reduction may also be accomplished using feature transforma-
tion methods where the vector Z′ is subjected to a linear or a nonlinear mapping

that projects it to a lower dimensional subspace. Examples of such transformations

include the use of PCA, ICA, multidimensional scaling (MDS), Kohonen Maps and
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neural networks [398]. The application of a feature selection or feature transforma-

tion procedure results in a new feature vector Z = {z1, z2, . . . zk} which can now

be used to represent the identity of an individual.

Ross and Govindarajan [402] apply feature-level fusion to three different sce-

narios (a) multialgorithm, where two different face recognition algorithms based on

PCA and LDA are combined; (b) multisensor, where three different color channels

of a face image are independently subjected to LDA and then combined; and (c)

multimodal, where the face and hand geometry feature vectors are combined. The

general procedure adopted in [402] is summarized below.

1. Let {Xi,Yi} and {Xj ,Yj} be the feature vectors obtained at two different

time instances i and j. Here, X and Y represent the feature vectors derived from

two different information sources. The corresponding fused feature vectors may

be denoted as Zi and Zj , respectively.

2. Let sX and sY be the normalized match scores generated by comparing Xi with

Xj and Yi with Yj , respectively, and let smatch = (sX + sY )/2 be the fused

match score obtained using the simple sum rule.

3. A pair of fused feature vectors, Zi and Zj , are then compared using two dif-

ferent distance measures: the Euclidean distance (seuc) and the thresholded

absolute distance (TAD) (stad). Thus,

seuc =
k∑

r=1

(zi,r − zj,r)2 (12.3)

stad =
k∑

r=1

I(|zi,r − zj,r|, t). (12.4)

Here, I(u, t) = 1, if u > t (and 0, otherwise), t is a prespecified threshold, and

k is the dimensionality of the fused feature vector. The TAD measure determines

the number of normalized feature values that differ by a magnitude greater

than t. The seuc and stad values are consolidated into one feature level score,

sfeat, via the simple sum rule (Fig. 12.3). This retains information both at the

match score level (smatch) as well as the feature level (sfeat).

4. Finally, the simple sum rule is used to combine smatch and sfeat in order to

obtain the final score stot.

The authors compare the matching performances obtained using smatch and stot

in all three scenarios. Results indicate that feature level fusion is advantageous in

some cases. The feature selection scheme ensures that redundant or correlated fea-

ture values are detected and removed before invoking the matcher. This is probably

one of the key benefits of performing fusion at the feature level [403]. Therefore, it

is important that vendors of biometric systems grant access to feature level informa-

tion to permit the development of effective fusion strategies.

Chibelushi et al. [379] discuss a scheme to combine the features associated with

the voice (audio) and lip shape (video) of an individual in an identification system.
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Fig. 12.3. The procedure adopted in [402] to perform feature level fusion

Fourteen mel-frequency cepstral coefficients (MFCC) and 12 geometric features

are extracted from the audio and video streams to represent the voice and shape

of the lips, respectively. The PCA and LDA transformations are used to reduce the

dimensionality of the concatenated feature set. The authors demonstrate that the use

of feature level fusion in their system is equivalent to increasing the signal-to-noise

ratio (SNR) of the audio signal thereby justifying the use of lip shape in the fusion

module. Other examples of feature level fusion can be found in [404] (face and iris)

and [405] (hand geometry and palmprint).

12.4.3 Score-Level Fusion

A match score represents the result of comparing two feature sets extracted using

the same feature extractor. A similarity score denotes how “similar” the two feature

sets are, while a distance score denotes how “different” they are.7

In score-level fusion the match scores output by multiple biometric matchers are

combined to generate a new match score (a scalar) that can be subsequently used by

the verification or identification modules for rendering an identity decision. Fusion

at this level is the most commonly discussed approach in the biometric literature

primarily due to the ease of accessing and processing match scores (compared to the

raw biometric data or the feature set extracted from the data). Fusion methods at this

7 Consequently, a high similarity score between a pair of feature sets indicates a good match

whereas a high distance score indicates a poor match.
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level can be broadly classified into three categories [338]: density-based schemes,

transformation-based schemes, and classifier-based schemes.

Density-Based Fusion Schemes

Let s = [s1, s2, . . . , sR] denote the scores emitted by multiple matchers, with sj

representing the match score of the jth matcher, j = 1, . . . , R. Further, let the

labels ω0 and ω1 denote the genuine and impostor classes, respectively. Then, by

Bayes decision theory [327], the probability of error can be minimized by adopting

the following decision rule.8

Assign s → ωi if

P (ωi | s) > P (ωj | s), i �= j, and i, j = 0, 1. (12.5)

Here, the a posteriori probability P (ωi | s), i = 0, 1, can be derived from the

class-conditional density function p(s |ωi using the Bayes formula, i.e.,

P (ωi | s) =
p(s |ωi)P (ωi)

p(s)
, (12.6)

where P (ωi) is the a priori probability of observing class ωi and p(s) denotes the

probability of encountering s. Thus, (12.5) can be re-written as

Assign s → ωi if

p(s |ωi)
p(s |ωj)

> τ, i �= j, and i, j = 0, 1 (12.7)

where
p(s |ωi)
p(s |ωj)

is known as the likelihood ratio and τ = P (ωj)
P (ωi)

is a predetermined

threshold. The density p(s |ωi) is typically estimated from a training set of match

score vectors, using parametric or nonparametric techniques [406]. However, a large

number of training samples is necessary to reliably estimate the joint-density func-

tion p(s |ωi) especially if the dimensionality of the feature vector s is large. In the

absence of sufficient number of training samples (which is typically the case when

the multibiometric system is first deployed or if its parameters are subsequently

adjusted), it is commonly assumed that the scalar scores si, s2, . . . sR are generated

by R independent random processes. This assumption permits the density function

to be expressed as

p(s |ωi) =
R∏

j=1

p(sj |ωi), (12.8)

where the joint-density function is now replaced by the product of its marginals.

The marginal densities, p(sj |ωi), j = 1, 2, . . . R, i = 0, 1, are estimated from

8 This is known as the Bayes decision rule or the minimum-error-rate classification rule

under the 0–1 loss function [327].
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a training set of genuine and impostor scores corresponding to each of the R bio-

metric matchers. Equation (12.8) results in the product rule which combines the

scores generated by the R matchers as,

sprod =
R∏

j=1

p(sj |ω0)
p(sj |ω1)

. (12.9)

Kittler et al. [360] modify the product rule by further assuming that the a pos-
teriori probability P (ωi | s) of class ωi does not deviate much from its a priori
probability P (ωi) resulting in the sum rule:

ssum =

∑R
j=1 p(sj |ω0)∑R
j=1 p(sj |ω1)

. (12.10)

Similar expressions can be derived for combining the match scores using the

max, min and median rules [338, 360]. All the aforementioned rules implicitly ass-

ume that the match scores are continuous random variables. Dass et al. [407] relax

this assumption and represent the univariate density functions (i.e., the marginals

in (12.8)) as a mixture of discrete as well as continuous components. The resulting

density functions are referred to as generalized densities. The authors demonstrate

that the use of generalized density estimates (as opposed to continuous density esti-

mates) significantly enhances the matching performance of the fusion algorithm.

Furthermore, they use copula functions [408,409] to model the correlation structure

between the match scores s1, s2, . . . , sR and, subsequently, define a novel fusion

rule known as the copula fusion rule.

Transformation-Based Fusion Schemes

Density-based schemes, as stated earlier, require a large number of training samples

(i.e., genuine and impostor match scores) in order to accurately estimate the den-

sity functions. This may not be possible in most multibiometric systems due to the

time, effort, and cost involved in acquiring labeled multibiometric data in an opera-

tional environment. In such situations, it may be necessary to directly combine the

match scores generated by multiple matchers using simple fusion operators (such

as the simple sum of scores or order statistics) without first interpreting them in a

probabilistic framework. However, such an approach is meaningful only when the

scores output by the matchers are comparable. To facilitate this, a score normal-

ization process is essential to transform the multiple match scores into a common

domain. The process of score normalization entails changing the location and the

scale parameters of the underlying match score distributions in order to ensure com-

patibility between multiple score variables. A few of the commonly discussed score

normalization methods are described here.

The simplest normalization technique is the min–max normalization. Min–max

normalization is best suited for the case where the bounds (maximum and minimum
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values) of the scores produced by a matcher are known. In this case, we can easily

transform the minimum and maximum scores to 0 and 1, respectively. However,

even if the match scores are not bounded, we can estimate the minimum and

maximum values for the given set of training match scores and then apply the min–

max normalization. Let si
j denote the ith match score output by the jth matcher,

i = 1, 2, . . . , N ; j = 1, 2, . . . , R (R is the number of matchers and N is the number

of match scores available in the training set). The min–max normalized score, nst
j ,

for the test score st
j is given by

nst
j =

st
j − minN

i=1 si
j

maxN
i=1 si

j − minN
i=1 si

j

. (12.11)

When the minimum and maximum values are estimated from the given set of match

scores, this method is not robust (i.e., the method is sensitive to outliers in the data

used for estimation). Min–max normalization retains the original distribution of

scores except for a scaling factor and transforms all the scores into a common range

[0, 1]. Distance scores can be transformed into similarity scores by subtracting the

normalized score from 1.

Decimal scaling can be applied when the scores of different matchers are on a

logarithmic scale. For example, if one matcher has scores in the range [0, 10] and the

other has scores in the range [0, 1000], the following normalization could be applied

to transform the scores of both the matchers to the common [0, 1] range.

nst
j =

st
j

10nj
, (12.12)

where nj = log10 maxN
i=1 si

j . In the example with two matchers where the score

ranges are [0, 10] and [0, 1000], the values of n would be 1 and 3, respectively. The

problems with this approach are the lack of robustness and the implicit assumption

that the scores of different matchers vary by a logarithmic factor.

The most commonly used score normalization technique is the z-score normal-

ization that uses the arithmetic mean and standard deviation of the training data.

This scheme can be expected to perform well if the average and the variance of the

score distributions of the matchers are available. If we do not know the values of

these two parameters, then we need to estimate them based on the given training

set. The z-score normalized score is given by

nst
j =

st
j − μj

σj
, (12.13)

where μj is the arithmetic mean and σj is the standard deviation for the jth matcher.

However, both mean and standard deviation are sensitive to outliers and hence, this

method is not robust. z-score normalization does not guarantee a common numeri-

cal range for the normalized scores of the different matchers. If the distribution of

the scores is not Gaussian, z-score normalization does not preserve the distribution
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of the given set of scores. This is due to the fact that mean and standard devia-

tion are the optimal location and scale parameters only for a Gaussian distribution.

While mean and standard deviation are reasonable estimates of location and scale,

respectively, they are not optimal for an arbitrary match score distribution.

The median and MAD statistics are less sensitive to outliers as well as points in

the extreme tails of the distribution. Hence, a normalization scheme using median

and MAD would be relatively robust and is given by

nst
j =

st
j − medj

MADj
, (12.14)

where medj = medianN
i=1s

i
j and MADj = medianN

i=1|si
j −medj |. However, the

median and the MAD estimators have a low efficiency compared to the mean and

the standard deviation estimators, i.e., when the score distribution is not Gaussian,

median and MAD are poor estimates of the location and scale parameters. There-

fore, this normalization technique does not preserve the input score distribution and

does not transform the scores into a common numerical range.

Cappelli et al. [410] use a double sigmoid function for score normalization in a

multibiometric system that combines different fingerprint matchers. The normalized

score is given by

nst
j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

1 + exp
(
−2
(

st
j
−τ

α1

)) if st
j < τ ,

1

1 + exp
(
−2
(

st
j
−τ

α2

)) otherwise,

(12.15)

where τ is the reference operating point and α1 and α2 denote the left and right

edges of the region in which the function is linear. The double sigmoid function

exhibits linear characteristics in the interval (τ −α1, τ −α2). While the double sig-

moid normalization scheme transforms the scores into the [0, 1] interval, it requires

careful tuning of the parameters τ, α1 and α2 to obtain good efficiency. Generally,

τ is chosen to be some value falling in the region of overlap between the genuine

and impostor score distributions, and α1 and α2 are set so that they correspond

to the extent of overlap between the two distributions toward the left and right of

τ , respectively. This normalization scheme provides a linear transformation of the

scores in the region of overlap, while the scores outside this region are transformed

nonlinearly. The double sigmoid normalization is very similar to the min–max nor-

malization followed by the application of a two-quadrics (QQ) or a logistic (LG)

function as suggested by [411]. When the values of α1 and α2 are large, the dou-

ble sigmoid normalization closely resembles the QQ-min–max normalization. On

the other hand, we can make the double sigmoid normalization approach toward

LG-min–max normalization by assigning small values to α1 and α2.

The tanh-estimators introduced by Hampel [412] are robust and highly efficient.

The tanh normalization is given by
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nst
j =

1
2

{
tanh

(
0.01

(
st

j − μGH

σGH

))
+ 1
}

, (12.16)

where μGH and σGH are the mean and standard deviation estimates, respectively,

of the genuine score distribution as given by Hampel estimators. Hampel estimators

are based on the following influence (ψ)-function:

ψ(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u 0 ≤ |u| < a,
a ∗ sign(u) a ≤ |u| < b,

a ∗ sign(u) ∗
(

c−|u|
c−b

)
b ≤ |u| < c,

0 |u| ≥ c,

(12.17)

where

sign{u} =
{

+1, if u ≥ 0,
−1, otherwise.

(12.18)

The Hampel influence function reduces the influence of the scores at the tails

of the distribution (identified by a, b, and c) during the estimation of the location

and scale parameters. Hence, this method is not sensitive to outliers. If many of the

points that constitute the tail of the distributions are discarded, the estimate is robust

but not efficient (optimal). On the other hand, if all the points that constitute the

tail of the distributions are considered, the estimate is not robust but its efficiency

increases. Therefore, the parameters a, b, and c must be carefully chosen depending

on the amount of robustness required which in turn depends on the amount of noise

in the available training data.

Mosteller and Tukey [413] introduce the biweight location and scale estima-

tors that are robust and efficient. But, the biweight estimators are iterative in nat-

ure (initial estimates of the biweight location and scale parameters are chosen, and

these estimates are updated based on the training scores), and are applicable only

for Gaussian data. A summary of the characteristics of the different normalization

techniques discussed here is shown in Table 12.2. The min–max, decimal scaling,

and z-score normalization schemes are efficient, but are not robust to outliers. On

the other hand, the median normalization scheme is robust but inefficient. Only the

double sigmoid and tanh-estimators have both the desired characteristics, namely,

robustness and efficiency.

Table 12.2. Summary of score normalization techniques

normalization technique robustness efficiency

min–max no high

decimal scaling no high

z-score no high

median and MAD yes moderate

double sigmoid yes high

tanh-estimators yes high
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Once the match scores output by multiple matchers are transformed into a com-

mon domain they can be combined using simple fusion operators such as the sum

of scores, product of scores, or order statistics (e.g., maximum/minimum of scores

or median score).

Classifier-Based Fusion Schemes

In the verification mode of operation, the match scores generated by the multiple

matchers may be input to a trained pattern classifier, such as a neural network, in

order to determine the class label (genuine or impostor). In this approach, the goal

is to directly estimate the class rather than to compute an intermediate scalar value.

Classifier-based fusion schemes assume the availability of a large representative

number of genuine and impostor scores during the training phase of the classifier

when its parameters are computed. The component scores do not have to be trans-

formed into a common domain prior to invoking the classifier.

In the biometric literature several classifiers have been used to consolidate the

match scores of multiple matchers. Brunelli and Falavigna [364] use a HyperBF

network to combine matchers based on voice and face features. Verlinde and Cho-

let [414] compare the relative performance of three different classifiers, namely,

the k-Nearest Neighbor classifier using vector quantization, the decision tree classi-

fier, and a classifier based on the logistic regression model when fusing the match

scores originating from three biometric matchers. Experiments on the M2VTS data-

base [415] show that the total error rate (sum of the false accept and false reject rates)

of the multimodal system is an order of magnitude less than that of the individual

matchers. Chatzis et al. [416] use classical k-means clustering, fuzzy clustering, and

median radial basis function (MRBF) algorithms for fusion at the match score level.

The proposed system combines the output of five different face and voice matchers.

Each matcher provides a match score and a quality metric indicating the reliability

of the match score. These values are concatenated to form a ten-dimensional vector

that is input to the classifiers. Ben-Yacoub et al. [417] evaluate a number of classifi-

cation schemes for fusion including support vector machine (SVM) with polynomial

kernels, SVM with Gaussian kernels, C4.5 decision trees, multilayer perceptron,

Fisher linear discriminant, and Bayesian classifier. Experimental evaluations on the

XM2VTS database [418] consisting of 295 subjects suggest the benefit of score

level fusion. Bigun et al. [380] propose a novel algorithm based on the Bayesian

classifier that takes into account the estimated accuracy of the individual classifiers

(i.e., matchers) during the fusion process. Sanderson and Paliwal [385] use a support

vector machine (SVM) to combine the scores of face and speech experts. In order

to address noisy input, they design structurally noise-resistant classifiers based on

a piece-wise linear classifier and a modified Bayesian classifier. Wang et al. [419]

view the match scores obtained from face and iris recognition modules as a two-

dimensional feature vector and use Fisher’s discriminant analysis and a neural net-

work classifier to classify this match score vector. Ross and Jain [420] use decision

tree and linear discriminant classifiers for classifying the match scores pertaining to

the face, fingerprint, and hand geometry modalities.
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12.4.4 Rank-Level Fusion

When a biometric system operates in the identification mode, the output of the sys-

tem can be viewed as a ranking of the enrolled identities. In this case, the output

indicates the set of possible matching identities sorted in decreasing order of confi-

dence. The goal of rank level fusion schemes is to consolidate the ranks output by the

individual biometric subsystems in order to derive a consensus rank for each iden-

tity. Ranks provide more insight into the decision-making process of the matcher

compared to just the identity of the best match, but they reveal less information

than match scores. However, unlike match scores, the rankings output by multiple

biometric systems are comparable. As a result, no normalization is needed and this

makes rank level fusion schemes simpler to implement compared to the score level

fusion techniques.

Let us assume that there are M users enrolled in the database and let the num-

ber of matchers be R. Let rj,k be the rank assigned to user k by the jth matcher,

j = 1, . . . , R and k = 1, . . . , M . Let sk be a statistic computed for user k such that

the user with the lowest value of s is assigned the highest consensus (or reordered)

rank. Ho et al. [421] describe the following three methods to compute the statistic s.

1. Highest rank method. In the highest rank method, each user is assigned the

highest rank (minimum r value) as computed by different matchers, i.e., the

statistic for user k is

sk =
R

min
j=1

rj,k. (12.19)

Ties are broken randomly to arrive at a strict ranking order. This method is use-

ful only when the number of users is large compared to the number of matchers,

which is typically the case in large-scale authentication systems. If this condi-

tion is not satisfied, the system will encounter several ties thereby rendering the

final ranking uninformative. An advantage of the highest rank method is that it

can utilize the strength of each matcher effectively. Even if only one matcher

assigns a high rank to the correct identity, it is still very likely that this user will

receive a high rank after reordering.

2. Borda count method. The Borda count method uses the sum of the ranks

assigned by the individual matchers to calculate the value of s, i.e., the statistic

for user k is

sk =
R∑

j=1

rj,k. (12.20)

The magnitude of the Borda count for each user is a measure of the degree

of agreement among the different matchers on whether the input belongs to

that user. The Borda count method assumes that the ranks assigned to the users

by the matchers are statistically independent and that all the matchers perform

equally well.

3. Logistic regression method. The logistic regression method is a generalization

of the Borda count method where a weighted sum of the individual ranks is

calculated, i.e., the statistic for user k is
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sk =
R∑

j=1

wjrj,k. (12.21)

The weight, wj , to be assigned to the jth matcher, j = 1, . . . , R, is determined

by logistic regression [422]. The logistic regression method is useful when the

different biometric matchers have significant differences in their accuracies.

However, this method requires a training phase to determine the weights.

12.4.5 Decision-Level Fusion

Many commercial off-the-shelf (COTS) biometric matchers provide access only to

the final recognition decision. When such COTS matchers are used to build a multi-

biometric system, only decision level fusion is feasible. Methods proposed in the

literature for decision level fusion include “AND” and “OR” rules [423], majority

voting [424], weighted majority voting [359], Bayesian decision fusion [361], the

Dempster–Shafer theory of evidence [361] and behavior knowledge space [425].

Let M denote the number of possible decisions (also known as class labels
or simply classes in the pattern recognition literature; these three terms are used

interchangeably in the following discussion) in a biometric system. Also, let ω1,
ω2, . . . ωM indicate the classes associated with each of these decisions.

1. “AND” and “OR” rules. In a multibiometric verification system, the simplest

method of combining decisions output by the different matchers is to use the

“AND” and “OR” rules. The output of the “AND” rule is a “match” only when

all the biometric matchers agree that the input sample matches with the tem-

plate. On the contrary, the “OR” rule outputs a “match” decision as long as

at least one matcher decides that the input sample matches with the template.

The limitation of these two rules is their tendency to result in extreme oper-

ating points. When the “AND” rule is applied, the false accept rate (FAR) of

the multibiometric system is extremely low (lower than the FAR of the indi-

vidual matchers) while the FRR is high (greater than the FRR of the individual

matchers). Similarly, the “OR” rule leads to higher FAR and lower FRR than

the individual matchers. When one biometric matcher has a substantially higher

EER compared to the other matcher, the combination of the two matchers using

“AND” and “OR” rules may actually degrade the overall performance [423].

Due to this phenomenon, the “AND” and “OR” rules are rarely used in practi-

cal multibiometric systems.

2. Majority voting. The most common approach for decision level fusion is maj-

ority voting where the input biometric sample is assigned to that identity on

which a majority of the matchers agree. If there are R biometric matchers, the

input sample is assigned an identity when at least k of the matchers agree on

that identity, where

k =

⎧⎨
⎩

R
2 + 1 if R is even,

R+1
2 otherwise.

(12.22)
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When none of the identities is supported by k matchers, a reject decision is

output by the system. Majority voting assumes that all the matchers perform

equally well. The advantages of majority voting are (a) no apriori knowledge

about the matchers is needed and (b) no training is required to come up with the

final decision. A theoretical analysis of the majority voting fusion scheme was

done by [426] who established limits on the accuracy of the majority vote rule

based on the number of matchers, the individual accuracy of each matcher and

the pairwise dependence between the matchers.

3. Weighted majority voting. When the matchers used in a multibiometric system

are not of similar recognition accuracy (i.e., imbalanced matchers/classifiers),

it is reasonable to assign higher weights to the decisions made by the more

accurate matchers. In order to facilitate this weighting, the labels output by the

individual matchers are converted into degrees of support for the M classes as

follows.

sj,k =
{

1, if output of the jth matcher is class ωk,

0, otherwise,
(12.23)

where j = 1, . . . , R and k = 1, . . . , M . The discriminant function9 for class

ωk computed using weighted voting is

gk =
R∑

j=1

wjsj,k, (12.24)

where wj is the weight assigned to the jth matcher. A test sample is assigned to

the class with the highest score (value of discriminant function).

4. Bayesian decision fusion. The Bayesian decision fusion scheme relies on trans-

forming the discrete decision labels output by the individual matchers into con-

tinuous probability values. The first step in the transformation is the generation

of the confusion matrix for each matcher by applying the matcher to a training

set D. Let CM j be the M×M confusion matrix for the jth matcher. The (k, r)th

element of the matrix CM j (denoted as cmj
k,r) is the number of instances in

the training data set where a pattern whose true class label is ωk is assigned

to the class ωr by the jth matcher. Let the total number of data instances in D
be N and the number of elements that belong to class ωk be Nk. Let cj be the

class label assigned to the test sample by the jth matcher. The value cmj
k,cj

/Nk

can be considered as an estimate of the conditional probability P (cj |ωk) and

Nk/N can be treated as an estimate of the prior probability of class ωk. Given

the vector of decisions made by R matchers c = [c1, . . . , cR], we are interested

9 The discriminant function is used to classify an input pattern. Typically, a discriminant

function is defined for each pattern class and the input pattern is assigned to the class

whose discriminant function gives the maximum response.
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in calculating the posterior probability of class ωk, i.e., P (ωk | c). According to

the Bayes rule,

P (ωk | c) =
P (c |ωk) P (ωk)

P (x)
, (12.25)

where k = 1, . . . , M . The denominator in (12.25) is independent of the class ωk

and can be ignored for the decision making purpose. Therefore, the discriminant

function for class ωk is

gk = P (c |ωk) P (ωk). (12.26)

The Bayes decision fusion technique chooses that class which has the largest

value of discriminant function calculated using (12.26). To simplify the com-

putation of P (c |ωk), one can assume conditional independence between the

different matchers. Under this assumption, the decision rule is known as naive

Bayes rule and P (c |ωk) is computed as

P (c |ωk) = P (c1, . . . , cR |ωk) =
R∏

j=1

P (cj |ωk) . (12.27)

The accuracy of the naive Bayes decision fusion rule has been found to be fairly

robust even when the matchers are not independent [427].

5. Dempster–Shafer theory of evidence. The Dempster–Shafer theory of evidence

is based on the concept of assigning degrees of belief for uncertain events. Note

that the degree of belief for an event is different from the probability of the

event. This subtle difference is explained in the following example. Suppose we

know that a biometric matcher has a reliability of 0.95, i.e., the output of the

matcher is reliable 95% of the time and unreliable 5% of the time. Suppose that

the matcher outputs a “match” decision. We can assign a 0.95 degree of belief

to the “match” decision and a zero degree of belief to the “nonmatch” decision.

The zero belief does not rule out the “nonmatch” decision completely, unlike a

zero probability. Instead, the zero belief indicates that there is no reason to bel-

ieve that the input does not match successfully against the template. Hence, we

can view belief theory as a generalization of probability theory. Indeed, belief

functions are more flexible than probabilities when our knowledge about the

problem is incomplete.

Rogova [428] and Kuncheva et al. [429] propose the following methodology

to compute the belief functions and to accumulate the belief functions accord-

ing to the Dempster’s rule. For a given input pattern, the decisions made by R
classifiers for a M -class problem is represented using a R × M matrix known

as a decision profile (DP) [429] which is given by,

DP =

⎡
⎢⎢⎢⎢⎣

s1,1 . . . s1,k . . . s1,M

. . .
sj,1 . . . sj,k . . . sj,M

. . .
sR,1 . . . sR,k . . . sR,M

⎤
⎥⎥⎥⎥⎦ ,
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where sj,k is the degree of support provided by the jth matcher to the kth class.

At the decision level, the degree of support is expressed as

sj,k =

{
1, if output of the jth matcher is class ωk,

0, otherwise,
(12.28)

where j = 1, . . . , R and k = 1, . . . , M . The decision template (DT k) of each

class ωk is the average DP for all the training instances that belong to the class

ωk. When the degrees of support defined in (12.28) are used, one can easily see

that the elements of the decision template DT k are related to the elements of

the confusion matrices of the R matchers in the following manner.

DT k
j,r =

CM j
k,r

Nk
, (12.29)

where Nk is the number of instances in the training set D that belong to class ωk,

j = 1, . . . , R and k, r = 1, . . . , M . For a given test pattern Xt, the decision

profile DP t is computed after the decisions of the R matchers are obtained.

The similarity between DP t and the decision templates for the various classes

is calculated as follows.

Φj,k =

(
1 +
(||DT k

j − DP t
j ||
)2)−1

∑M
r=1

((
1 +
(||DT r

j − DP t
j ||
)2)−1

) , (12.30)

where DT k
j represents the jth row of DT k belonging to class ωk, DP t

j rep-

resents the jth row of DP t belonging to the test pattern Xt, and ||.|| den-

otes the matrix norm. For every class k = 1, . . . , M and for every matcher

j = 1, . . . , R, we can compute the degree of belief as

bj,k =
Φj,k

[∏M
r=1,r �=k (1 − Φj,r)

]
1 − Φj,k

[∏M
r=1,r �=k (1 − Φj,r)

] . (12.31)

The accumulated degree of belief for each class k = 1, . . . , M based on the

outputs of R matchers is then obtained using the Dempster’s rule as

gk =
R∏

j=1

bj,k. (12.32)

The test pattern Xt is assigned to the class having the highest degree of

belief gk.
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12.5 Summary

Multibiometric systems are expected to enhance the recognition accuracy of a

personal authentication system by reconciling the evidence presented by multiple

sources of information. In this chapter, the different sources of biometric informa-

tion as well as the type of information that can be consolidated was presented. Dif-

ferent fusion strategies were also discussed. Typically, early integration strategies

(e.g., feature-level) are expected to result in better performance than late integra-

tion (e.g., score-level) strategies. However, it is difficult to predict the performance

gain due to each of these strategies prior to invoking the fusion methodology. While

the availability of multiple sources of biometric information (pertaining either to a

single trait or to multiple traits) may present a compelling case for fusion, the cor-
relation between the sources has to be examined before determining their suitability

for fusion. Combining uncorrelated or negatively correlated sources is expected to

result in a better improvement in matching performance than combining positively

correlated sources. This has been demonstrated by Kuncheva et al. [430] for fusion

at the decision level using the majority vote scheme. Combining sources that make

complementary errors is assumed to be beneficial. However, defining an appropriate

diversity measure to predict fusion performance has been elusive thus far.

The development of robust HCIs is necessary to permit the efficient acquisi-

tion of multibiometric data from individuals (see [431] and the references therein).

A HCI that is easy to use can result in rapid user habituation and promote the

acquisition of high quality biometric data. With the increased use of biometrics in

authentication solutions, it is only a matter of time before multibiometric systems

are deployed in a variety of applications in government, military, and commercial

systems.



13 Performance Prediction Methodology
for Multibiometric Systems

Natalia A. Schmid and Joseph A. O’Sullivan

13.1 Introduction

Secure personal authentication and identification are challenging problems for

modern society. While the rapid development of new information technologies

makes life more organized and convenient, it also necessitates the development of

new security systems to prevent unauthorized access and abuse. Biometrics-based

authentication and identification systems are often designed for controlling access to

facilities, personal computing and communication devices, financial accounts, and

information databases.

For our purposes, study of biometrics is a study of physiological and behavioral

characteristics of an individual [432]. To be qualified as a biometric, it must satisfy

a number of requirements. The four most important are (1) universality: everyone

must possess it; (2) uniqueness: no two individuals should have the same value of

the characteristic; (3) permanence: it must not change with time; (4) measurability:

it must be easy to measure. Several characteristics have been proposed, researched,

and implemented for personal identification, including voice, infrared facial and

hand vein thermograms, fingerprints, face, iris, ear, gait, keystroke dynamics, DNA,

signature, acoustic emissions, odor, retinal scan, and hand and finger geometry.

Most of these characteristics are believed to be unique. The uniqueness of physio-

logical characteristics is a result of both genetic conditions and random physical

processes occurring during the stage of embryonic development. Here, the physio-

logical processes are modeled mathematically.

An engineering approach to the problem of identification is to state it as a recog-

nition problem. Most information available to engineers about biometrics is in the

form of images (iris scan, fingerprint, hand geometry) or signals (voice). Often

systems (such as iris recognition based on IrisCode [433]) extract a robust set of

features selected for good recognition performance. After features are extracted, the

most common approach is to treat extracted features as deterministic parameters.

For instance in a fingerprint identification problem, a set of minutia points is con-

sidered as one of the best deterministic representations in terms of performance,

provided that the number of minutiae points is large enough. To make a finger-

print identification system based on minutiae points robust, bounding boxes used

for counting the number of matching minutia points in two fingerprints are adjusted

adaptively [434]. In face recognition, principal components analysis (PCA) and

linear discriminant analysis (LDA) have been leading techniques [435, 436]. Face
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recognition techniques based on a three-dimensional representation are the current

state-of-the-art techniques (see for example [437]). In hand geometry, features are

Euclidean distances between different points on a hand [438]. An alternative to a

deterministic approach is to model images, signals, or extracted features as realiza-

tions of stochastic processes. While for physical signatures, such as the distribution

of magnetic particles on magnetic tape or ink, or the distribution of woodgrains on

a wooden surface, estimation of stochastic models is more straightforward, for most

biometric signatures it remains a challenging task. Common models of signatures

as linear combinations of components may be considered to be stochastic models;

the distributions of the coefficients are often closely approximated using standard

parameterized distributions. The estimation of these models from training data is

beyond the scope of this chapter. However, we note that the number of parameters,

features, or components used in a representation must not be too large in order to

avoid over-fitting the training data; which ones to use may be determined based

on the information provided [439]. In this chapter, we proceed with an analysis

assuming the stochastic models are known, providing the analytical tools to predict

performance given these models.

A typical identification system is designed to operate in two modes: the off-line

mode and the on-line mode. During the off-line mode, data are collected for each

individual, and a template is extracted and stored in a database. The template may

comprise a vector of features, coefficients in a components model, or parameters

in a probability distribution for the data. During the on-line mode, input data are

acquired, its template is extracted, and a match is performed against each template

stored in the database. Performance of a recognition system is usually measured

in terms of the probabilities of error as a function of design parameters (receiver

operating characteristic (ROC) curves for a binary problem). Performance of practi-

cal biometrics-based identification systems is often evaluated by modeling the deci-

sion function as a Bernoulli distributed random variable with its mean estimated

using training data and then evaluating the confidence intervals for the estimated

probabilities of error [440–443].

Major challenges of biometric system design today include high-performance,

efficient strategies for biometric fusion at the matching score level [444, 445];

adjustment of thresholds in decision functions with the goal of achieving optimal

performance; fusion at the feature level [446]; defining level of individuality for

a unimodal biometric [447]; collection of data under conditions of environmental

and demographic variations for the purpose of system testing and performance pre-

diction [432, 448, 449]. In this chapter, we address two major challenges. They are

performance prediction and capacity analysis for multimodal biometrics-based iden-

tification systems. For our analysis, we model multimodal templates stored in

the database of an identification system as noisy realizations of independent and

identically distributed stationary ergodic random processes. The unknown input data

presented for identification are matched against every template in the database. Here

matching is equivalent to finding a noisy template that has a known joint distribu-

tion with the input data. The problem of identification is then a statistical hypothesis
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testing problem. The average probability of error is asymptotically approximated

by an exponential function with explicit dependence on the number of parameters

of the system. The minimum probability of error, as we show, is determined by

the smallest exponent and is equal to the minimum Chernoff information among

all distinct pairs of hypotheses. This result was earlier proved by Leang and John-

son [450] for data with independent and identically distributed components and

by Schmid and O’Sullivan [451] for the case when signatures are modeled as re-

alizations of stationary and ergodic processes. We extend the results to the case

of multimodal signatures. The capacity of an identification system is obtained by

examining a communication channel (with random coding) that is directly analogous

to the recognition system.

Many of our results require a measure of the variability in the templates and

information about the templates provided by the measured data to get large. One

way to achieve this is for the dimension of the templates to increase (increasing

number of features, components, or parameters), and the information per dimension

to be lower bounded. Physically this may correspond to increasing resolution of an

imaging sensor, the length of a biometric signature, or the number of samples while

maintaining a lower bound on the noise per sample, to measuring and extracting

new informative features, or making multiple measurements. As the information

increases, the number of signatures that can be reliably distinguished increases.

The rest of this chapter is organized as follows. Section 13.2 introduces the

model proposed to describe multimodal biometric data. In Sect. 13.3, the identifica-

tion problem is stated as a multiple hypothesis testing problem. Several asymptotic

results related to the probability of error are obtained by applying a large deviations

approach in Sect. 13.3.1. In Sect. 13.4, the capacity of a biometrics-based identi-

fication system is determined. Examples with templates modeled as realizations

of stationary Gaussian processes are given in Sect. 13.5. Section 13.6 presents the

summary of the results.

13.2 Stochastic Model for Multimodal Biometric Signatures

The precision and efficiency of biometrics-based identification systems rely on the

concept of individuality of biometric signatures. Since signatures of different indi-

viduals drawn from the same biometric modality contain a large number of common

features, mostly due to the fact that the development of biometrics is guided by

human genomics, we consider the following model for biometric signatures.

Suppose that a biometric signature from a single modality is a function of two

processes, a background process common for the considered signatures of all

individuals and an individual signature process statistically independent of the back-

ground process and individual signature processes of the other users. Thus a biomet-

ric signature discretized to n samples of the mth user is given by

Xn
m = f(Bn, Sn

m), (13.1)
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where Bn is an n × 1 common background process, Sn
m is the n × 1 individual

signature of the mth user, and f(·) is an unknown random nonlinear function mix-

ing background and individual processes. Since the general form of f(·) is hard to

evaluate, we may appeal to its simplest additive form. In this form, the resulting

biometric signature is given by

Xn
m = Bn + Sn

m. (13.2)

In the case, when it is possible to estimate the common background signature and

filter out its effect, biometric signatures are composed of independent individual

signatures

Xn
m = Sn

m. (13.3)

In this work we assume that the described preprocessing is possible and thus will

consider signatures of type (13.3).

Biometric signatures acquired from two different modalities characterizing the

same individual can often be treated as independent. Denote by Xn
A,m the signature

of individual m collected from modality A. Denote by Xn
B,m the signature of the

same individual collected from modality B. Then the combined signature X2n
m of

the individual can be obtained by concatenating Xn
A,m and Xn

B,m. In the following

we use X2n
m to denote the combined signature vector.

Note that the model and results described in this work can be extended to include

an arbitrary number of biometric modalities or representations of the same modal-

ity provided that the templates resulting from different representations or templates

characterizing different modalities can be treated as independent.

13.3 Performance of a Multimodal Biometric Recognition
System with M Templates

Suppose that M independent and identically distributed template random processes

denoted by {XA,l(k), l = 1, 2, . . .} (for biometric modality A), and {XB,l(k), l =
1, 2, . . .} (for biometric modality B), k = 1, . . . , M, and an input random process

{Yl, l = 1, 2, . . .}, are available. M can be large but fixed. The random processes

take values in polish spaces [452]; our examples are for real-valued processes. A

noisy realization of the input process is acquired on-line and is tested for statis-

tical dependence with each template in the data base. If the input process passes

a test for statistical dependence with exactly one of the template processes, then

the input process (and thus the corresponding individual) is positively identified.

If the input process passes a test for statistical independence of all the template

processes, the individual is announced to be unknown. Denote the joint distribu-

tion on the first n samples of each of the two multimodal processes and the input

process by PX2n(k),Y 2n , and the corresponding marginal distributions by PX2n(k),
k = 1, . . . , M, and PY 2n . The notation follows Gray [452]. In particular, X2n(k) =
(XA,1(k), XA,2(k), . . . , XA,n(k), XB,1(k), XB,2(k), . . . , XB,n(k)). Under hypo-

thesis Hk, k = 1, . . . , M, the input sequence Y 2n results from a joint probability
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distribution function with the signature sequence X2n(k) and is independent of

all other signatures. Under H0, the template processes and the input process are

mutually independent. The optimal test statistic for the identification problem is an

M -dimensional vector of log-likelihood ratios iMn . In this case, log-likelihood ratios

have a special form and are called information densities:

iMn ≡ 1
n

[
log

dPX2n(1),Y 2n

dPX2n(1) × dPY 2n

, . . . , log
dPX2n(M),Y 2n

dPX2n(M) × dPY 2n

]T

. (13.4)

We assume, conditioned on the individual, that the data from modalities A and

B are independent. The information density vector iMn can then be written as

iMn ≡ 1
n

[
log

dPXn
A

(1),Y n
A

dPXn
A

(1) × dPY n
A

+ log
dPXn

B
(1),Y n

B

dPXn
B

(1) × dPY n
B

, . . . ,

]

×
[
log

dPXn
A

(M),Y n
A

dPXn
A

(M) × dPY n
A

+ log
dPXn

B
(M),Y n

B

dPXn
B

(M) × dPY n
B

]T

. (13.5)

To state the consistency results for the test statistic in (13.4) we appeal to

Assumptions 1 and 2 from [451]. The first assumption ensures that information

densities are well defined. The second assumption provides a sufficient condition to

guarantee convergence of components in (13.4) to their asymptotic expected values

under the hypothesis of statistical independence.

Denote the asymptotic expected value of a component in (13.4) under the joint

distribution by

Ī = lim sup
n→∞

EPX2n,Y 2n

1
n

log
dPX2n,Y 2n

dPX2n × dPY 2n

,

and under the product distribution by

D̄ = lim sup
n→∞

EPX2n×PY 2n

1
n

log
dPX2n × dPY 2n

dPX2n,Y 2n

.

The quantity D̄ equals the relative entropy rate between the product distribution and

the joint distribution and is thus a type of reverse mutual information rate (the mutual

information rate Ī equaling the relative entropy rate between the joint distribution

and the product distribution). We refer to D̄ as the reverse information rate.

Because the biometric signatures characterizing modalities A and B of the

same individual are statistically independent given that individual, the asymptotic

expected values Ī and D̄ can be written as

Ī = ĪA + ĪB = lim sup
n→∞

EPXn
A

,Y n
A

1
n

log
dPXn

A
,Y n

A

dPXn
A
× dPY n

A

+ lim sup
n→∞

EPXn
B

,Y n
B

1
n

log
dPXn

B
,Y n

B

dPXn
B
× dPY n

B
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and

D̄ = D̄A + D̄D = lim sup
n→∞

EPXn
A
×PY n

A

1
n

log
dPXn

A
× dPY n

A

dPXn
A

,Y n
A

+ lim sup
n→∞

EPXn
B
×PY n

B

1
n

log
dPXn

B
× dPY n

B

dPXn
B

,Y n
B

.

If the assumptions above are satisfied, then by a theorem by Gray [452, pp 178–

179] and Theorem 2 of [453], each component in (13.4) converges almost surely

either to the mutual information rate, Ī , or to the negative of the reverse information

rate, −D̄, depending on the true hypothesis. Thus the vector in (13.4) under (M +1)
distinct hypotheses converges to the vector of asymptotic values V0, V1, . . . , VM

given by

Vk ≡ lim
n→∞ iMn (X2n(1), . . . , X2n(M), Y 2n)

=
[−D̄, . . . , Ī , . . . ,−D̄

]T
, a.e. PXA(k),YA

×PXB(k),YB
×

M∏
j �=k

PXA(j)×PXB(j),

with Ī in the kth position, k = 1, . . . , M and

V0 ≡ lim
n→∞ iMn (X2n(1), . . . , X2n(M), Y 2n)

=
[−D̄, . . . ,−D̄, . . . ,−D̄

]T
, a.e.

M∏
k=1

PXA(k) × PXB(k) × PYA
× PYB

.

13.3.1 Exponential Error Rate Analysis

Under stronger conditions, components in (13.4) converge to Ī and −D̄ exponen-

tially with the rate determined by large deviation rate functions. Large deviation

results in this section are obtained following the approach described in [454, 455].

Define the vector of the log-moment generating functions as

φ(n)(θ) =
1
n

[
log E0{e(n<θ,iM

n >)}, . . . , log EM{e(n<θ,iM
n >)}

]
, (13.6)

where θ is an M -dimensional vector of parameters, Ek denotes the expectation

under Hk, and < ·, · > is the notation for the inner product between two vectors.

Consider a set of assumptions from [455, p 43]:

1. The limiting vector of log-moment generating functions

φ̄(θ) = lim
n→∞φ(n)(θ)

is well defined.

2. θ = 0 is in the interior of the domain of φ̄(·).
3. zφ̄(·) is steep on its domain.
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Define the kth component of the (M + 1)-dimensional vector of large deviation

rate functions I(t) as the Fenchel–Legendre transform of the function φ̄k(θ) (the

kth component of φ̄(θ))

Ik(t) = sup
θ∈RM

[
< θ, t > −φ̄k(θ)

]
, k = 0, . . . , M,

where t ∈ RM .

Each pair of components in the vector I(t) is linearly related. Consider the pair

(Il(t), Ik(t)), where l �= k �= 0. The relationship between the corresponding log-

moment generating functions is given by

φ
(n)
k ([θ1, . . . , θM ]T ) = φ

(n)
l ([θ1, . . . , (θl − 1), . . . , (θk + 1), . . . , θM ]T ). (13.7)

Since this is true for each given n, (13.7) also holds in the limit as n → ∞, and

hence, the corresponding components in the vector I(t) are related as

Ik(t) = tl − tk + Il(t),

where tl and tk are the entries in the vector t.
The log-moment generating functions under H0 and Hk, k = 1, . . . , M, are

related as

φ
(n)
k ([θ1, . . . , θM ]T ) = φ

(n)
0 ([θ1, . . . , (θk + 1), . . . , θM ]T ),

and hence, the relationship between the rate functions Ik(t) and I0(t) is given by

Ik(t) = I0(t) − tk.

The functions Ik(t) have the property that they are zero at their corresponding mean

vectors Vk. That is, Ik(Vk) = 0, k = 0, 1, . . . , M . The relationships between rate

functions yield

I0(Vk) = Ī (13.8)

Il(Vk) = Ī + D̄, l �= k. (13.9)

A typical measure of recognition performance applied in practice is the Bayes

probability of error. Alternatively, to quantify the rapid decrease in error as a func-

tion of n, exponential rate functions are studied (see [456, 457]).

Denote by Dn, where n is the dimension of vectors Xn
A(k), Y n

A , Xn
B(k), and

Y n
B in the test statistic, the optimally divided decision region such that the Bayes

probability of error

Pe =
M∑

k=0

πkPe |Hk
, (13.10)

is minimized. Here πk are known and sum to one and Pe |Hk
is the conditional

probability of error under Hk, k = 0, . . . , M. Denote by Uk,n the decision region
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under hypothesis Hk and by U c
k,n the region complementary to it. Uk,n are such that

∪M
k=0Uk,n = Dn. Denote by D, Uk, and U c

k the asymptotic optimal decision re-

gion, the asymptotic decision region under Hk, and the complementary to it region,

respectively. Let U c
k be an open set and Ū c

k be its closure.

Theorem 1 (Ellis). If Assumptions 1 and 2 are true, then

lim sup
n→∞

1
n

log P
(
iMn (k) ∈ Ū c

k |Hk

) ≤ − inf
t∈Ūc

k

Ik(t).

If Assumptions 1 and 3 are true, then

lim inf
n→∞

1
n

log P
(
iMn (k) ∈ U c

k |Hk

) ≥ − inf
t∈Uc

k

Ik(t).

See [454, pp 21–23] for comments on the proof.

In the following theorem we use Ellis’s results to derive the dependence between

the probability of error and the length of the vectors X2n(k), k = 1, . . . , M,
and Y 2n. Note that this result requires knowledge of the asymptotic exponential

rate function, but can be used to evaluate the probability of identification error

for an arbitrary, but large value n. Ultimately, we obtain a simple approximation

for the probability of recognition error in the following form Pe ≈ F (M,n, t)
exp(−n mink∈{0,1,...,M} Ik(t)), where F (M,n, t) is a slowly varying function

of the number of templates in the database M, a threshold t, and the number

of samples n.

Theorem 2. The exponential rate of the error probability for the Bayes rule in the
(M+1)-ary case equals the minimum Chernoff information among all distinct pairs
of the original (M + 1) hypotheses. That is,

Pe
.= e−n mink �=l I

(k,l)
k

(0), k, l = 0, . . . , M.

The proof relies on (1) upper and lower bounds on Pe due to binary hypothesis

testing problems, (2) application of Ellis’s theorem to find the asymptotic rates of

conditional errors, and (3) application of Chernoff theorems [458, pp 312–313]. The

point I
(k,l)
k (0) = I

(k,l)
l (0) is called Chernoff information and is equal to the rate that

determines the minimum probability of error in the binary recognition problem.

Comment 1: For the identification problem above, the asymptotic decision region

D is a simplex with the asymptotic expected values Vk, of the vector of information

densities under the hypotheses 0, 1, . . . , M as its vertices in the M -dimensional

space.

Comment 2: Under the condition that the origin of the coordinate system lies in the

region D, the exponential rate for the Bayes rule in the (M + 1)-ary case is deter-

mined by the minimum Chernoff information among all distinct pairs of hypotheses
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Fig. 13.1. Shown is the asymptotic decision region for M = 2 with D̄ > Ī

including H0. If the origin of the coordinate system does not lie in the region D,
the minimum probability of error is determined by the Chernoff information for the

binary problem with the null-hypothesis tested against a non-null hypothesis.

This comment corresponds to the case D̄ > Ī (see Fig. 13.1).

Comment 3: As noted earlier, this extends the results of Leang and Johnson [450].

13.4 Recognition Capacity

In this section, we find the operational capacity for a multimodal biometrics-based

identification system. Rather than fixing the number of hypotheses, the following

analysis determines the exponential error rate under the condition that the number

of templates grows exponentially with the length of the observed vector.

The results in this section are based on a straightforward analogy between a

recognition system and a communication system that uses random coding. The tem-

plates in the recognition problem correspond to codewords in the communication

problem. Suppose that X2n(1), X2n(2), . . . , X2n(M), with M = 2nR, templates

(random codewords) are drawn i.i.d. from the distribution PX2n . Here R is the rate

of the random code. Given that one of these random codewords is randomly selected

as the truth, assume that an observation Y 2n is drawn from the corresponding con-

ditional distribution determined by PX2n,Y 2n , and that this distribution satisfies the

assumptions from the previous sections. The observation Y 2n is directly analogous

to the output of a communication system. The observation Y 2n must be matched

against each of the 2nR templates stored in the database. This matching process

defines the recognition output and is analogous to channel decoding.

The probability of error is

Pe =
1
M

M∑
m=1

Pe |X2n(m). (13.11)
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The minimum probability of error decision rule is the same as the maximum like-

lihood decision rule: select the most likely observation given X2n(m).
A rate R is achievable if a sequence of recognition systems can be defined with

rates Rn ≤ R so that the probability of error goes to zero as n goes to infinity. Define

the recognition capacity to be the supremum of achievable rates. The direct analogy

to communication systems using random codes immediately yields the recognition

capacity.

Theorem 3. Under the assumptions above, the recognition capacity equals the sup-
mutual information rate Ī(X;Y ). That is, all rates less than C = Ī(X;Y ) are
achievable (the probability of error using the minimum probability of error decoding
rule tends to zero as n tends to infinity); conversely, if rate R is achievable then
R ≤ C.

13.5 Examples

The examples in this section illustrate theory developed above. The first example

assumes a stationary Gaussian model for the data. While this model is a loose

approximation for biometric data collected and processed according to currently

available technologies, it is a valid model for description of physical patterns and

structures consisting of a large number of tiny particles such as a wood structure

with a large number of wood grains or a painted surface consisting of a large num-

ber of tiny particles of paint.

The second example can be applied to predict the performance of a multimodal

biometric systems relying on PCA signatures of the face and iris biometrics.

13.5.1 M-ary Gaussian Example

Suppose that M independent and identically distributed noisy template Gaussian

signatures Xn(1), Xn(2), . . . , Xn(M) and a noisy Gaussian candidate Y n are

available for identification. Each noisy template signature is modeled as an n-sample

realization Zn(k), k = 1, . . . , M of a discrete-time stationary Gaussian random

process with zero mean and Toeplitz covariance matrix K(SZ) parameterized by

the power spectral density SZ and an n-sample realization Wn(k) of a discrete-time

additive stationary Gaussian noise with zero mean and covariance matrix K(SW )
parameterized by the power spectral density SW

Xn(k) = Zn(k) + Wn(k), k = 1, . . . , M.

A noisy Gaussian candidate is a realization of a Gaussian signature Zn
Y and a vector

of an additive Gaussian noise Wn
Y independent of and identically distributed with

noise realizations Wn(k), k = 1, . . . , M, contained in the noisy signatures

Y n = Zn
Y + Wn

Y .



13 Performance Prediction Methodology for Multibiometric Systems 223

The hypothesis testing problem is stated as follows. Under the hypothesis Hk,
k = 1, . . . , M, Zn

Y = Zn(k). Under the null hypothesis H0, the candidate Zn
Y is

independent of all signatures Zn(k), k = 1, . . . , M. The test statistic is given by

(13.4) with the following entries

− [Xn(k), Y n]
(
R−1

1 − R−1
0

)
[Xn(k), Y n]T

− log det
(
R1R−1

0

)
, k = 1, . . . , M,

where R1 is the covariance matrix of the vector [Xn(k), Y n] when the noisy signa-

ture and the noisy candidate have the same signature part and R0 is the covariance

matrix of the vector [Xn(k), Y n] when the signature part in the noisy signature and

the noisy candidate are independent.

The asymptotic expected values Vk, k = 0, 1, . . . , M of the vector iMn under Hk

are obtained by applying matrix analysis and the results from [459] related to the

Toeplitz distribution theorem:

V0 =
[−D̄, . . . ,−D̄, . . . ,−D̄

]T
,

Vk =
[−D̄, . . . , Ī, . . . ,−D̄

]T
, k = 1, . . . , M, (13.12)

where Ī is the kth entry in Vk and from [453]

D̄ =
1
4π

∫ π

−π

2f̂(λ)

(1 − f̂(λ))
dλ +

1
4π

∫ π

−π

log
(
1 − f̂(λ)

)
dλ,

Ī = − 1
4π

∫ π

−π

log
(
1 − f̂(λ)

)
dλ.

The function f̂(λ) is analogous to the signal-to-noise ratio and is given by

f̂(λ) =
S2

Z(λ)
(SZ(λ) + SW (λ))2

.

From Theorem 2, the minimum probability of error within the simplex defined

by vertices V0, . . . , VM is achieved at the point of the pairwise Chernoff informa-

tion for one of two binary hypothesis testing problems. The first binary problem

is formed from the original null hypothesis and the original kth hypothesis. The

large deviation rate function for this binary problem is the solution of the following

equation:

I
(0,1)
1 (0) = sup

s

[
1
4π

∫ π

−π

log
(
1 − s2f̂(λ)

)
dλ (13.13)

+
s

4π

∫ π

−π

log
(
1 − f̂(λ)

)
dλ

]
,

where the superscript in I
(0,1)
1 (0) contains the indices of two tested hypotheses.

Details of the derivation for this case can be found in [453]. The second binary
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problem is formed from the original kth and lth hypotheses. Because of the symme-

try of the problem, k can be set to 1 and l can be set to 2. The test statistic for this

binary problem is the loglikelihood ratio:

Λn = − 1
2n

[Xn(1), Y n, Xn(2)]
(
R̃−1

1 − R̃−1
2

)
× [Xn(1), Y n, Xn(2)]T ,

where T denotes transpose and

R̃1 =

⎡
⎣ KZW K(SZ) 0

K(SZ) KZW 0
0 0 KZW

⎤
⎦ , (13.14)

R̃2 =

⎡
⎣KZW 0 0

0 KZW K(SZ)
0 K(SZ) KZW

⎤
⎦ , (13.15)

with KZW = K(SZ) + K(SW ).
The asymptotic log-moment generating function under the distribution of h1 in

this case is given by

φ̄1 = − 1
4π

∫ π

−π

log
[
1 − (s2 + (1 + s)2)f̂(λ)

]
dλ

+
1
4π

∫ π

−π

log
[
1 − f̂(λ)

]
dλ.

The Chernoff information for this problem is the solution to the following equation:

I
(1,2)
1 (0) = sup

s
[−φ̄1],

where superscripts (1, 2) in I
(1,2)
1 (0) are the indices of two tested hypotheses.

When f̂ is a constant, the equations above can be readily solved. Suppose that

the vectors in the test statistics have i.i.d. components and f̂ = (σ2/(σ2 + η2))2,
where σ2 is the variance of the signal part in tested Gaussian signatures and η2 is

the variance of the noise in tested Gaussian signatures. Then the optimal parameter

that solves (13.13) is given by

s∗ = − 1

log(1 − f̂)
−
√

1

log2(1 − f̂)
+

1

f̂
. (13.16)

For the second binary problem the optimal parameter is equal to s∗ = −0.5. Then

the exponent of the minimum probability of error P (error) for the original M -ary

problem is determined by the smallest of two Chernoff informations:

min
{

I
(0,1)
1 (0), I(1,2)

1 (0)
}

,
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Fig. 13.2. The upper and the lower panels show the minimal component in the vector of the

large deviation rate functions as a function of the thresholds t1 and t2 for σ2 = η2 = 1 and

σ2 = 3 and η2 = 1, respectively

where

I
(0,1)
1 (0) =

1
2

log
(
1 − s∗2f̂

)
+

s∗

2
log(1 − f̂)

with s∗ in (13.16) and

I
(1,2)
1 (0) =

1
2

log

(
1 − f̂

2

)
− 1

2
log
(
1 − f̂

)
.

Figure 13.2 shows the dependence of the recognition rate on the values of the

thresholds t1 and t2 for two choices of σ2 and η2. The plot on the left panel is

generated for σ2 = η2 = 1. The plot on the right panel is generated for σ2 = 3
and η2 = 1. Since for both cases D̄ > Ī, by Comment 2 the minimal probability of

error for both examples is achieved at the point (0,−D̄) and is equal to the Chernoff

information I(0,1)(0) = 0.0398 and I(0,1) = 0.1349, respectively.

13.5.2 Capacity of the Multimodal System Based on PCA Signatures
of the Face and Iris

In this example we will show that by carefully modeling data we can predict

performance of currently available in practice biometric recognition systems. The

framework for approaching the modeling problem is demonstrated for PCA repre-

sentation applied to combined Face and Iris data. Following this framework we will

be able to evaluate the performance of various representation schemes for a number

of biometric modalities.

Consider the case where both iris and face images are processed using global

PCA method. Suppose that two sets of templates associated with the face modal-

ity, modality A, and iris modality, modality B, are available. The templates Xn
A(m)

and Xn
B(m), two sets of weights in PCA representation of modalities A and B

from user m, are modeled as realizations of two mutually independent Gaussian

random vectors each of length n with mean zero and variances equal to the eigen-

values of the empirical covariance matrices formed using 108 sample vectors from
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each of biometric modalities, iris and face. Note that a modality of each individual

is represented in training data by a single image. Vectors Xn
c (m), m = 1, . . . , M,

c ∈ A,B are assumed to be mutually independent and identically distributed. Sup-

pose that noisy template Y n
A and Y n

B from two independent modalities, face and

iris, are presented for identification. The templates are realizations of Gaussian

vectors with mean zero and variances equal to the eigenvalues of the empiri-

cal covariance matrices augmented with an estimated variance of noise in en-

coded face and iris data. Then the vector of information densities is given by

iMn = 1/n[iMn (1), . . . , iMn (M)]T with iMn (m) being

iMn (m) = − 1
2n

∑
c∈{A,B}

n∑
k=1

(
X2

c,k

σ2
c

− 2
Xc,kYc,k

σ2
c

+
λc,kY 2

c,k

σ2
c (λc,k + σ2

c )
− log

(
1 +

λc,k

σ2
c

))
, (13.17)

where λc,k is the kth eigenvalue of the modality c ∈ {A, B} and σ2
c is the estimated

noise present in the candidate observation Y n
c . The PCA representation rate for iris

and face (assuming that the biometric modalities are independent and resolution

of images is high) is the asymptotic expected value of a single component (13.17)

under the joint for this component distribution. After performing analysis of

empirical dependencies of the eigenvalues on the parameters n and M, we have

the expression for the representation rate

R̄PCA = lim
M→∞

lim
n→∞

1
2n

∑
c∈{A,B}

n∑
k=1

log

(
1 +

λc,k(M)
σ2

c,k(M)

)
,

where the dependence of eigenvalues and the noise value on the number of

users in the database and the number of entries in representation vector are

explicitly indicated. We have shown empirically (see Fig. 13.3) that the sequences
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Fig. 13.3. Dependence of values of individual eigenvalues on the number of users used to

estimate eigenvalues for iris (left panel) and face (right panel) biometrics
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{λc,k(M)} and {σ2
c (M)} have similar rates of decay as M and n increase. For this

particular example, the rate of representation for the PCA encoded iris data is equal

to 0.5. The rate of representation for the PCA encoded face data is equal to 0.189.

Thus the capacity of the multimodal system that uses combined PCA representation

for Face and Iris is 0.689.

13.6 Summary

Biometrics are physical signatures associated with individuals. Performance analysis

of recognition systems based on physical signatures in general and biometrics

in particular is often done experimentally, with results not easily generalized to

alternative implementations. This chapter describes a framework for determining

the performance of physical signature authentication based on likelihood models.

The hypothesis testing approach yields the information density as the test statistic

for deciding if two realizations of a random process are independent. Under the hy-

pothesis that the realizations are dependent, the information density converges to

the sup-mutual information rate between the observations. Under the independence

hypothesis, the information density converges to the negative sup-relative entropy

rate between the product and the joint distributions. Conditions are given under

which the convergence rates are exponential, and rate functions are derived.

Performance of the identification system is analyzed applying the theory of large

deviations. It is shown that the minimum probability of error is determined by the

smallest component in the vector of large deviations rate functions. Capacity of a

biometrics-based recognition system is defined.

The results rely on models for the data. For many anticipated applications, the

derivation of these models may be the most challenging aspect. For example, in

biometric applications, stochastic models for the biometric features being measured

are required. In magnetic medium authentication, explicit stochastic micromagnetic

models for the medium must be used. Typically, present implementations use sub-

optimal, nonparametric test statistics such as the correlation coefficient between the

candidate signature presented for authentication and the previous signature mea-

surement [460, 461]. Much work remains in quantifying the performance loss in

using a suboptimal approach.
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Graphical Models and Image Processing. He also served as the Editor-in-Chief of

IEEE Transactions on Pattern Analysis and Machine Intelligence during

2001–2004. He served as a member of the IEEE Signal Processing Society Board of

Governors during 1996–1999 and as its Vice President of Awards and Membership

during 2002–2004. He has received several awards, including NSF Presidential

Young Investigator Award, an IBM Faculty Development Award, the 1990

Excellence in Teaching Award from the School of Engineering at USC, the 1992
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Best Industry Related Paper Award from the International Association of Pattern

Recognition (with Q. Zheng), and the 2000 Technical Achievement Award from

IEEE Signal Processing Society. At University of Maryland, he was elected as

a Distinguished Faculty Research Fellow (1996–1998) and as a Distinguished

Scholar-Teacher (2003). He is a Fellow of IEEE and the International Association

for Pattern Recognition. He has served as a General the Technical Program Chair

for several IEEE International and National Conferences and Workshops. He is a

Golden Core Member of IEEE Computer Society.

Amit K. Roy-Chowdhury has been an Assistant Professor of Electrical

Engineering at the University of California, Riverside since January 2004. He com-

pleted his Ph.D. in 2002 from the University of Maryland, College Park, where he

also worked as a Research Associate in 2003. Previously, he received his Master

of Engineering in Systems Science and Automation from the Indian Institute of

Science, Bangalore, India in 1997. His research interests are in the broad areas

of image processing and analysis, computer vision, video communications and

machine learning. Currently, he is working on problems of pose and illumination

invariant video-based object recognition, event analysis in large video networks,

and multiterminal video compression. He has over 50 papers in peer-reviewed

journals, conferences and edited books. He is an author of the book titled “Recogni-

tion of Humans and their Activities Using Video”. He is on the program committee

of many major conferences in computer vision and image/signal processing and is

a regular reviewer for the main journals in these areas.

Roberto Cipolla received the B.A. degree (Engineering) from the University of

Cambridge in 1984 and the M.S.E. degree (Electrical Engineering) from the Univer-

sity of Pennsylvania in 1985. In 1991, he was awarded the D.Phil. degree (Computer

Vision) from the University of Oxford. His research interests are in computer vision

and robotics and include the recovery of motion and three-dimensional shape of

visible surfaces from image sequences, visual tracking and navigation, robot hand-

eye coordination, algebraic and geometric invariants for object recognition and per-

ceptual grouping, novel man-machine interfaces using visual gestures, and visual

inspection. He has authored three books, edited six volumes, and coauthored more

than 200 papers.

Satyanadh Gundimada received the Bachelor’s degree in Electronics and

Communication Engineering from Osmania University, India, in 2001, the Master’s

degree in Electrical Engineering from Old Dominion University, in 2003. He is cur-

rently pursuing his Ph.D. degree in Electrical and Computer Engineering at Old

Dominion University. His current research interests include pattern recognition,

multisensor image fusion, computer vision and image processing.

Dr. Riad I. Hammoud is a research scientist, author, accomplished entrepre-

neur, futurist and advisor. He is currently a senior research scientist at the World

Headquarters of Electronics and Safety Division of Delphi Corporation. Since

February 2001, he holds a Ph.D. degree in “Computer Vision and Robotics” from
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INRIA Rhone-Alpes, and a M.S. degree in “Control of Systems” from Université

de Technologie de Compiègne, France. After his Ph.D., he launched a startup on the

campus of Grenoble on “Interactive Video Tech”. Around mid 2001, he moved to

US and joined Rensselaer Polytechnic Institute (Troy, NY) and Indiana University

(Bloomington, IN) as visiting and postdoctoral fellow. His research interests include

automatic target classification in and beyond the visible spectrum, object tracking,

biometrics, and real-time optimization techniques for safety, security and enter-

tainment applications. His research is performed under confidential terms and has

been funded by Alcatel Alsthom Research, INRIA, Honda, US Air Force, Indiana

University, and Delphi Electronics & Safety. He published over 30 referred pub-

lications on object and image classification, video analysis, eye and pedestrian

tracking, stereo vision, statistical modeling, face biometrics, surveillance and driver

monitoring systems. He holds over 20 patents pending, defense publications and

trade secrets. He authored several Springer books: “Interactive Video: algorithms

and technologies”, “Multi-Sensory and Multi-Modal face biometrics for personal

identification”, “Computer-Aided Eye Monitoring”, and “Object Tracking and Class-

ification Beyond the Visible Spectrum”. He has been organizing and chairing several

IEEE, SPIE and ACM International workshops and conference sessions (OTCBVS,

ETRA, ATR, IVAN, IVRCIA). He is been serving on the reviewing committee of

several journals in computer vision (PAMI, IJCV, CVIU), as well as national and

international conferences (IEEE Intelligent Vehicles 2006, SPIE Defense and Se-

curity Symposiums, ACM ETRA Symposiums, IEEE Advanced Video and Signal

Surveillance). He was appointed in 2004 as guest editor of a special issue of

Springer it International Journal of Computer Vision (IJCV), and in 2005 as guest
editor of a special issue of Elseiver Computer Vision and Image Understanding
Journal (CVIU). He participated to the Society Automotive Engineers (SAE) con-

ference, as a panelist, on 1st November 2005. Recently, he gave an invited talk

at the Houston University, Texas, on “Video technologies on the move” (February

2006), and he participated to the defense jury of a Ph.D. student at the University

of Sherbrooke, Canada (March 2006). He was nominated by US government as an

outstanding researcher/professor, in May 2005. He received numerous awards from

Delphi Corporation including the “best technical publicity/paper award” in 2006. He

is the architect of the core algorithms of two vision-based safety products of Delphi

Electronics & Safety: Driver Fatigue Monitoring and Driver Distraction Detection.

Ju Han received the Ph.D. degree in Electrical Engineering from University

of California, Riverside in 2005. Currently, he is a postdoctoral fellow in the Life

Science Division at Lawrence Berkeley National Laboratory. His research interests

include biometrics, biological image understanding and computational biology.

Timothy J. Hazen received the S.B., S.M., and Ph.D. degrees in Electrical

Engineering and Computer Science from the Massachusetts Institute of Technology

(MIT) in 1991, 1993, and 1998, respectively. Since 1998 he has been a Research Sci-

entist at the MIT Computer Science and Artificial Intelligence Laboratory where he

works in the areas of automatic speech recognition, automatic person identification,
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multimodal speech processing, and conversational speech systems. He is also an

Associate Editor of the IEEE Transactions on Audio, Speech and Language

Processing.

Bernd Heisele received his Ph.D. from the University of Stuttgart in 1997.

He is currently a Senior Scientist at the Honda Research Institute and a Visit-

ing Researcher at the MIT Center for Biological and Computational Learning. His

research focuses on the problems of detecting, tracking, and recognizing faces and

other nonrigid moving objects.

Anil K. Jain is a University Distinguished Professor in the Department of Com-

puter Science and Engineering at Michigan State University. He received his B.Tech.

degree from Indian Institute of Technology, Kanpur and M.S. and Ph.D. degrees

from Ohio State University. He received a distinguished alumni award from Ohio

State University. His research interests include statistical pattern recognition, data

clustering and biometric authentication. He received the 1996 IEEE Transactions on

Neural Networks Outstanding Paper Award and best paper awards from the Pattern

Recognition Society in 1987 and 1991. He was the Editor-in- Chief of the IEEE

Transactions on Pattern Analysis and Machine Intelligence. He is a fellow of the

IEEE, ACM, IAPR, SPIE, and AAAS. He has received a Fulbright Research Award,

a Guggenheim fellowship, the Alexander von Humboldt Research Award and the

2003 IEEE Computer Society Technical Achievement Award. Holder of six patents

in the area of fingerprint matching, he is the author of a number of books, includ-

ing Handbook of Multibiometrics, Springer 2006, Biometric Systems, Technology,

Design and Performance Evaluation, Springer 2005, Handbook of Face Recogni-

tion, Springer 2005, Handbook of Fingerprint Recognition, Springer 2003 (received

the PSP award from the Association of American Publishers), BIOMETRICS: Per-

sonal Identification in Networked Society, Kluwer 1999, and Algorithms For Clus-

tering Data, Prentice-Hall 1988. ISI has designated him as a highly cited researcher.

He is an Associate editor of the IEEE Transactions on Information Forensics and

Security and ACM Transactions on Knowledge Discovery in Data. He is a member

of the National Academies panels on Whither Biometrics and Improvised Explosive

Device.

Ioannis A. Kakadiaris received the Ptychion (B.Sc.) in Physics from the Uni-

versity of Athens, Greece, in 1989, the M.Sc. in Computer Science from North-

eastern University, Boston, MA, in 1991, and the Ph.D. in Computer Science

from University of Pennsylvania, Philadelphia, PA, in 1997. He joined the Uni-

versity of Houston (UH) in August 1997 after completing a postdoctoral fellow-

ship at the University of Pennsylvania. He is the founder and Director of UH’s

Computational Biomedicine Laboratory (formerly the Visual Computing Lab) and

Director of the Division of Bio-Imaging and Bio-Computation at the UH Institute

for Digital Informatics and Analysis. In addition, he is the founder of Vision and

Graphics Computing, Inc. His research interests include biomedical image analysis,

biometrics, computer vision, and pattern recognition. He is the recipient of the

year 2000 NSF Early Career Development Award, UH Computer Science Research
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Excellence Award, UH Enron Teaching Excellence Award, James Muller VP Young

Investigator Prize, and the Schlumberger Technical Foundation Award.

Pradeep Khosla is currently the Dean (2004) of the Carnegie Institute of Tech-

nology (the College of Engineering at Carnegie Mellon), the Philip and Marsha

Dowd Professor in the College of Engineering and School of Computer Science

(1998), and Founding co-Director of CyLab (2003). His previous positions include

Assistant Professor (1986–1990), Associate Professor (1990–1994), and Professor

(1994), Founding Director (1997–1999) of Institute for Complex Engineered

Systems (ICES), Department Head of Electrical and Computer Engineering

(1999–2004), and Director of Information Networking Institute (2000–2004). Prior

to joining Carnegie-Mellon, he worked with Tata Consulting Engineers, and

Siemens in the area of real-time control. He received B. Tech. (Hons.) from IIT

(Kharagpur, India) in 1980, and both M.S. (1984) and Ph.D. (1986) degrees from

Carnegie Mellon University. From January 1994 to August 1996 he was on leave

from Carnegie Mellon and served as a DARPA Program Manager in the Soft-

ware and Intelligent Systems Technology Office (SISTO), Defense Sciences Office

(DSO), and Tactical Technology Office (TTO), where he managed advanced

research and development programs, with a total budget exceeding $50M in FY96,

in the areas of Information based Design and Manufacturing, Web based Infor-

mation Technology Infrastructure, Real-Time Planning, and Distributed AI and

Intelligent Systems, Real-Time Embedded Software, Sensor-based Control, and

Collaborative Robotics. During his tenure as Founding Director (1997–1999), ICES

grew to a total budget of more than $8M per year through strategic positioning

to pursue interdisciplinary projects that involved faculty from six different col-

leges at Carnegie Mellon in the areas of Embedded Systems, Tissue Engineering,

Design and Manufacturing, Design and Human Factors, and Networking. Dur-

ing his tenure as department head of Electrical and Computer Engineering, the

department grew more than 80% in research volume, added 23 new faculty (tenure

track and research), defined several strategic multidisciplinary initiatives, and the

Computer Engineering graduate program was ranked number one for the first time,

and the undergraduate program ranked third by US News and World Report in

their 2002 rankings. In 2003 he founded Carnegie Mellon CyLab a university-wide

research center with the goal of integrating technology (security, privacy, and next

generation IT), policy, and economics of IT, to address multidisciplinary issues that

require collaboration of experts across various disciplines. CyLab is a broad-based

research, development, and community outreach oriented multidisciplinary center

that supports and involves more than 40 faculty and 100 graduate students from

five different colleges within Carnegie Mellon, and has an annual budget of more

than $10M per year. As Director of the Information Networking Institute (INI), he

increased its enrollment several fold, created the Master of Science in Information

Security Technology and Management degree program, and defined international

graduate degree, and research programs with the Athens Information Technology

(AIT) Institute in Athens, Greece (CyLab, Athens), Cylab Korea, and CyLab Japan.

He is involved in education both at the graduate and the undergraduate level.
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He was a member of the committee that formulated a curriculum for the multi-

disciplinary Ph.D. program in Robotics at Carnegie Mellon. He was also a member

of the Wipe, the Slate Clean Committee that created a new four year undergraduate

ECE degree curriculum at CMU and proposed, amongst several other new ideas, the

notion of teaching Engineering to freshman an idea that has been adopted widely by

US and international universities. In support of the new curriculum he developed

the Introductory Freshman level course “Introduction to Electrical and Computer

Engineering” that emphasizes the notion of Teaching in Context. He is the coauthor

of a text book and a laboratory manual for this freshman course. As Dean, he ini-

tiated the development of a professional M.S. program in Innovation Management

and is providing leadership to redefine undergraduate education in engineering. He

is a recipient of the Inlaks Foundation Fellowship in 1982, the Carnegie Institute of

Technology Ladd award for excellence in research in 1989, two NASA Tech Brief

awards (1992, 1993), the ASEE 1999 George Westinghouse Award for Education,

the Siliconindia Leadership award for Excellence in Academics and Technology

in 2000, and the W. Wallace McDowell award from IEEE Computer Society in

2001. He was elected Fellow of IEEE in January 1995, Fellow of AAAI in 2003,

Fellow of AAAS in 2004, and member of the NAE in 2006. He served as Distin-

guished lecturer for the IEEE Robotics and Automation Society (1998–2003). In

December 2002, he was appointed a member of the IT transition team of Penn-

sylvania Governor-elect Ed Rendell and in February 2003 he was appointed to the

National Research Council Board on Manufacturing and Engineering Design for a

three year term. His research has resulted in three books and more than 300 arti-

cles in journals, conferences, and book contributions. He has been a keynote and

plenary speaker at several international conferences and workshops. He has served

as member of the AdCom of the IEEE Robotics and Automation Society and the

IEEE Systems, Man and Cybernetics Society, Chairman of the Education Commit-

tee of the IEEE Robotics and Automation Society, Professional Activities (PACE)

Chair of the Robotics and Automation Society, member of Robotics and Intelligent

Machines Coordinating Council (RIMCC), member of the Long Range Planning

Committee of the Robotics and Automation Society, member of the Board of Direc-

tors of The Robotics Industries Association (RIA) from 1998 to 2002, and member

of the Board of Directors of Pittsburgh Tissue Engineering Initiative (PTEI) during

2000–2001, and 2004 present. He served as Technical Editor of the IEEE Trans-

actions on Robotics and Automation and Associate Editor for ASME Journal of

Computers and Information Science in Engineering (JCISE), and IEEE Security

and Privacy. He currently serves on editorial boards of IEEE Spectrum, and Oxford

University Press series in Electrical and Computer Engineering. He is a consultant

to several companies and Venture Capitalists and has served on the technology ad-

visory boards of many start-ups and currently serves on several advisory boards in-

cluding iNetworks, ITU Ventures, iPolicy, and Alcoa CIO’s Advisory Board. He is

a member of the Board of Directors of Quantapoint Inc., the Children’s Institute, IIT

Foundation, and MPC corporation. He also serves on the advisory boards of Institute

for Systems Research (University of Maryland), College of Engineering (University



15 Biographies 241

of Waterloo), and is a member of the IT advisory committee, CSIRO, Australia. He

has served as member of the Strategy Review Board for Ministry of Science and

Technology, Taiwan; Council of Deans of the Aeronautics Advisory Committtee,

NASA; and Senior Advisory Group, DARPA Program on Joint Unmanned Combat

Air Systems. He is a cofounder of Quantapoint Inc. – a high-tech company based

in Pittsburgh. Quantapoint specializes in high precision laser scanners that are used

for creating high fidelity three-dimensional models.

B.V.K. Vijaya Kumar is a Professor in the Electrical and Computer Engineer-

ing Department at Carnegie Mellon University. His research interests include Auto-

matic Target Recognition Algorithms, Biometric Recognition Methods and Coding

and Signal Processing for Data Storage Systems. His publications include the book

entitled Correlation Pattern Recognition (coauthored with Dr. Abhijit Mahalanobis

and Dr. Richard Juday, Cambridge University Press, November 2005), eight book

chapters and about 400 technical papers. He served as the Pattern Recognition

Topical Editor for the Information Processing division of Applied Optics and is

currently serving as an Associate Editor for IEEE Transactions on Information

Forensics and Security. He has served on many conference program committees

and was a cogeneral chair of the 2004 Optical Data Storage conference and a

cogeneral chair of the 2005 IEEE AutoID Workshop. He is a senior member of

IEEE, a Fellow of SPIE – The International Society of Optical Engineering, a Fellow

of Optical Society of America (OSA) and a Fellow of the International Association

of Pattern Recognition (IAPR). In 2003, Prof. Kumar received the Eta Kappa Nu

award for Excellence in Teaching in the ECE Department at CMU and the Carnegie

Institute of Technology’s Dowd Fellowship for educational contributions.

Ji Ming is a Professor in the School of Electronics, Electrical Engineering and

Computer Science at the Queen’s University Belfast. He received a B.S. degree from

Sichuan University, China, in 1982, an M.Phil. degree from Changsha Institute of

Technology, China, in 1985, and a Ph.D. degree from Beijing Institute of Technol-

ogy, China, in 1988, all in Electronic Engineering. He was Associate Professor with

the Department of Electronic Engineering, Changsha Institute of Technology, from

1990 to 1993. From August 2005 to January 2006, he was a visiting scientist at the

MIT Computer Science and Artificial Intelligence Laboratory. His research inter-

ests include speech and language processing, image processing, signal processing

and pattern recognition.

Mohammed N. Murtuza, M.Sc. Candidate. Najam received his B.Sc. degree in

Computer Science from Texas A&M University, College Station, TX, in 2003. Cur-

rently, he is a research assistant at the Computational Biomedicine Lab. His research

interests include face recognition, ear recognition, three-dimensional biometric sys-

tems, genetic algorithms, and image processing.

Joseph A. O’Sullivan was born in St. Louis, MO, on 7th January 1960. He

received the B.S., M.S., and Ph.D. all in Electrical Engineering from the Univer-

sity of Notre Dame in 1982, 1984, and 1986, respectively. In 1986, he joined the
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faculty in the Department of Electrical Engineering at Washington University, and

is now Professor of Electrical and Systems Engineering. He has joint appointments

in the Departments of Radiology and of Biomedical Engineering. He is Director of

the Electronic Systems and Signals Research Laboratory and Associate Director of

the Center for Security Technologies at Washington University. His is Chair of the

Faculty Senate, Chair of the Faculty Senate Council, and faculty representative to

the Board of Trustees at Washington University. He was Secretary of the Faculty

Senate and of the Senate Council from 1995 to 1998. He was the publications editor

for the IEEE Transactions on Information Theory from 1992 to 1995, was Associate

Editor for Detection and Estimation, and was a Guest Associate Editor for the 2000

Special Issue on Information Theoretic Imaging. He was cochair of the 1999 Infor-

mation Theory Workshop on Detection, Estimation, Classification, and Imaging. He

is local arrangements chair for the IEEE 2003 Statistical Signal Processing Work-

shop. He will be cochair of the IEEE 2006 International Symposium on Informa-

tion Theory. His research interests include information theory, information-theoretic

imaging, automatic target recognition, CT imaging in the presence of known high

density attenuators, information hiding, and hyperspectral imaging. He was chair of

the St. Louis Section of the IEEE in 1994. He is a Fellow of the IEEE, a member of

Eta Kappa Nu, SPIE, SIAM, and AAAS. He was awarded an IEEE third Millennium

Medal.

Alex Park received S.B., M.Eng., and Ph.D. degrees in Electrical Engineering

and Computer Science from the Massachusetts Institute of Technology in 2001,

2002, and 2006, respectively. The topic of his doctoral dissertation was the unsuper-

vised acquisition of words from unlabeled speech. In addition to investigating the

problem of unsupervised speech processing, he has also worked on speaker recog-

nition, auditory modeling, and noise robust speech recognition. He is currently a

postdoctoral researcher at the MIT Computer Science and Artificial Intelligence

laboratory.

Georgios Passalis, Ph.D. candidate, received his B.Sc. from the Department

of Informatics and Telecommunications, University of Athens. He subsequently

received his M.Sc. from the Department of Computer Science, University of

Houston. Currently, he is a Ph.D. Candidate at the University of Athens and

Research Associate at the Computational Biomedicine Lab, University of Houston.

His thesis is focused on the domains of Computer Graphics and Computer Vision.

His research interests include object retrieval, face recognition, hardware acceler-

ated voxelization, and object reconstruction.

Dr. Pavlidis holds Ph.D. and M.S. degrees in Computer Science from the Uni-

versity of Minnesota, an M.S. degree in Robotics from the Imperial College of the

University of London, and a B.S. degree in Electrical Engineering from Democritus

University in Greece. He joined the Computer Science Department at the Univer-

sity of Houston in September 2002, where he is currently a Professor and Director

of the Computational Physiology Lab. His current research interests are in the area

of computational medicine, where he is charting new territory. He has developed a
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series of methods to compute vital signs of subjects in an automated, contact-free,

and passive manner. This new technology has found widespread applications in

computational psychology and is expected to find additional applications in pre-

ventive medicine. The quantification of stress in particular, through the computation

of periorbital blood perfusion, is his most well-known piece of research. It is this

research that established him as one of the founders of modern lie detection technol-

ogy. He is a Fulbright Fellow, a Senior Member of IEEE, and a member of the ACM.

He also serves as Associate Editor for the Journal Pattern Analysis and Applications

(Springer) and he has chaired numerous major IEEE conferences.

Narayanan Ramanathan received the B.E.(Hons.) degree in Electrical and

Electronics Engineering from Birla Institute of Technology and Science, Pilani in

2002. He received the Masters degree in Electrical and Computer Engineering from

University of Maryland College Park in 2004. He is currently pursuing Ph.D. in

Electrical and Computer Engineering from University of Maryland College Park.

His research interests span computer vision, pattern recognition and image process-

ing. He was awarded the university gold medal for the Batch of 2002 from Birla

Institute of Technology and Science, Pilani.

Arun Ross received the B.E. (Hons.) degree in Computer Science from the Birla

Institute of Technology and Science, Pilani, India, in 1996, and the M.S. and Ph.D.

degrees in Computer Science and Engineering from Michigan State University, East

Lansing, in 1999 and 2003, respectively. Between 1996 and 1997, he was with the

Design and Development Group of Tata Elxsi (India) Ltd., Bangalore, India. He

also spent three summers (2000–2002) with the Imaging and Visualization Group

at Siemens Corporate Research, Inc., Princeton, NJ, working on fingerprint recog-

nition algorithms. He is currently an Assistant Professor in the Lane Department

of Computer Science and Electrical Engineering, West Virginia University, Mor-

gantown. His research interests include pattern recognition, classifier combination,

machine learning, computer vision and biometrics. He is actively involved in the

development of Pattern Recognition and Biometrics curricula at West Virginia Uni-

versity. He was an invited speaker at the Eighteenth Annual Kavli Frontiers of Sci-

ence Symposium organized by the National Academy of Sciences in 2006. He also

served as the US expert in multibiometrics at the ISO/IEC JTC1 SC37 meeting for

biometric standards in 2004. Ross is the coauthor of the book “Handbook of Multi-

biometrics” published by Springer in 2006.

Prof. Marios Savvides is currently a Research Assistant Professor at the Elec-

trical and Computer Engineering (ECE) Department at Carnegie Mellon University

with a joint appointment at Carnegie Mellon CyLab. He obtained his B.Eng. (Hons.)

degree in Microelectronics Systems Engineering from University of Manchester In-

stitute of Science and Technology (UMIST) in England in 1997, his M.Sc. degree in

Robotics in 2000 from the Robotics Institute in Carnegie Mellon University (CMU),

Pittsburgh and his Ph.D. in May 2004 from the Electrical and Computer Engineering

Department also at CMU where he focused on Biometrics Identification technology

for his thesis “Reduced Complexity Face Recognition using Advanced Correlation
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Filters and Fourier Subspace Methods for Biometric Applications”. Prior to his cur-

rent position he was a Systems Scientist in ECE and CyLab at CMU from May

2004 until January 2006. He was also the technical lead in CMU’s face recog-

nition and iris efforts in FRGC + FRV T2006 and ICE1.0 + ICE2006. His

research interests are in Biometric recognition of Face, Iris, Fingerprint and Palm-

print modalities. He is a member of IEEE and SPIE and serves on the Program

Committee of several Biometric conferences including IEEE AutoID, SPIE Defense

& Security Biometric Identification Technologies and International Conference on

Image Analysis and Recognition (ICIAR) and the Biometrics Symposium of the an-

nual Biometrics Consortium (BC 2006). He also served on the Biometrics Panel in

SPIE’s Defense & Security Symposium 2006 and is also listed in 2005 Edition of

Marquis’x Who’s Who in America. He has authored and coauthored over 75 con-

ference and journal articles in the Biometrics area, has filed two patent applications

and authored three book chapters in this field.

Dr. Natalia A. Schmid is an Assistant Professor in the Lane Department of

Computer Science and Electrical Engineering at West Virginia University. She

received D.Sc. degree in Electrical Engineering from Washington University in

St. Louis. Her primary research interests include modern estimation and detection,

statistical signal processing, and information theory with applications to biometrics,

automatic target recognition, and medical imaging. She is currently involved in a

number of projects related to biometrics and funded by the Center for Identifica-

tion Technologies and Research, a joint NSF industry sponsored program. She is

also working on designing and evaluating Automatic Target Recognition algorithms

using the data collected by mini-UAVs exhibiting swarmed behavior. During her

doctoral years at Washington University, she worked in the fields of Automatic Tar-

get Recognition (ATR) and general authentication. During her postdoctoral years at

the University of Illinois in Urbana Champaign she was involved in work on Pas-

sive Radar Imaging. She publishes results of her work in recognized journals and

conference proceedings. She was an invited speaker at two recent Workshops on Iris

Recognition and Biometrics Quality organized and sponsored by the NIST.

Theoharis Theoharis, Associate Professor. He received his D.Phil. in com-

puter graphics and parallel processing from the University of Oxford in 1988. He

subsequently served as a research fellow (postdoctoral) at the University of Cam-

bridge and as a consultant with Andersen Consulting. He is currently an Associate

Professor with University of Athens and Adjunct Faculty with the Computational

Biomedicine Lab, University of Houston. His main research interests lie in the

fields of Computer Graphics, Visualization, Biometrics, and Archaeological

Reconstruction.

George Toderici, Ph.D. candidate. George received his B.Sc. in Computer Sci-

ence and Mathematics from the University of Houston. Currently, he is a Ph.D.

Candidate at the University of Houston. He is a member of the Computational Bio-

medicine Lab focusing on face recognition research. George’s research interests

include machine learning, pattern recognition, object retrieval, and their possible

applications on the GPU.
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Eugene Weinstein is currently a Ph.D. student in the Computer Science De-

partment at New York University, and an intern at Google’s New York research lab.

His current research interest is machine learning and its application to problems in

speech, music, image, and text processing. Before coming to NYU, he was a re-

search scientist at the Computer Science and Artificial Intelligence Laboratory at

the Massachusetts Institute of Technology, where he worked on integration and core

research efforts within Project Oxygen, a lab-wide pervasive computing project. He

received his M.Eng. and B.S. degree in Computer Science and Engineering from

MIT in 2001 and 2000, respectively. His Master’s thesis work was on facilitating

the development and deployment of robust natural language dialogue systems.

Lawrence B. Wolff is President and CEO of Equinox Corporation one of the

leading companies providing electro-optical image fusion technology to the US

military. He is also a Research Faculty member in the Department of Computer

Science at Johns Hopkins University. From 1990 to 2002 he was a full-time faculty

member there and has published over 100 articles in books, journals, conferences,

workshops, and encyclopedias on aspects of physics-based computer vision and ap-

plied optics. In academia he pioneered a number of techniques applying polarization

and multispectral measurement to computer vision. He received a Ph.D. and M.S.

in Computer Science from Columbia University and a B.S. in Mathematics and

Physics from Yale University. He has received a number of awards including the

NSF Presidential Young Investigator award and was an Associate Editor for IEEE

PAMI.

Yilei Xu (S’05) received his B.S. degree in Electrical Engineering from Peking

University, Beijing, China, in 2004 and M.S. degree in Electrical Engineering from

University of California at Riverside in 2006, where he is now pursuing the Ph.D.

degree in Electrical Engineering Department. His main research interests include

the computer vision, video processing and analysis, pattern recognition, machine

learning. Now he is working on illumination modeling and motion estimation from

video sequences.

Yi Yao received her B.S. and M.S. both in Electrical Engineering from Nanjing

University of Aeronautics and Astronautics, China in 1996 and 2000, respectively.

Currently she is a Ph.D. candidate in the Department of Electrical and Computer

Engineering at the University of Tennessee, Knoxville. Her research interests

include long range surveillance systems, object tracking, and multicamera surveil-

lance systems.

Xiaoli Zhou received the B.S. and M.S. degrees from Beijing University of

Posts and Telecommunications, China, in 1998 and 2001, respectively. Currently,

she is a Ph.D. candidate in the Department of Electrical Engineering at the Univer-

sity of California, Riverside (UCR). She is working on her research at the Center
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179. O. Arandjelović and R. Cipolla. Face set classification using maximally probable mu-

tual modes. In Proceedings of IEEE International Conference on Pattern Recognition
(ICPR), August 2006, pp 511–514.

180. K. Fukui and O. Yamaguchi. Face recognition using multi-viewpoint patterns for robot

vision. In International Symposium of Robotics Research, 2003.

181. A. Jain, R. Bolle, and S. Pankanti. Biometrics: Personal Identification in Networked
Society, 1st edition. Dordecht: Kluwer, 1999.

182. W. Zhao, R. Chellappa, P.J. Phillips, and A. Rosenfeld. Face recognition: a literature

survey. ACM Computing Surveys (CSUR), 35(4):399–458, 2003.

183. I. Pavlidis and P. Symosek. The imaging issue in an automatic face/disguise detection

system. In Proceedings of IEEE Workshop on Computer Vision Beyond the Visible
Spectrum: Methods and Applications, Hilton Head Island, SC, June 2000, pp 15–24.

184. F. Prokoski. History, current status, and future of infrared identification. In Proceedings
of IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and
Applications, Hilton Head Island, SC, June 2000, pp 5–14.

185. D.A. Socolinsky and A. Selinger. A comparative analysis of face recognition perfor-

mance with visible and thermal infrared imagery. In Proceedings of 16th International
Conference on Pattern Recognition, volume 4, Quebec, Canada, 2002, pp 217–222.

186. J. Wilder, P.J. Phillips, C. Jiang, and S. Wiener. Comparison of visible and infrared

imagery for face recognition. In Proceedings of the 2nd International Conference on
Automatic Face and Gesture Recognition, Killington, VT, October 1996, pp 182–187.

187. D.A. Socolinsky, L.B. Wolff, J.D. Neuheisel, and C.K. Eveland. Illumination invariant

face recognition using thermal infrared imagery. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR 2001),
volume 1, Kauai, HI, 2001, pp 527–534.



References 257

188. A. Selinger and D.A. Socolinsky. Face recognition in the dark. In Proceedings of
the Joint IEEE Workshop on Object Tracking and Classification Beyond the Visible
Spectrum, Washington, DC, June 2004.

189. R. Cutler. Face recognition using infrared images and eigenfaces (http://www.cs.
umd.edu/rgc/face/face.htm), 1996.

190. X. Chen, P.J. Flynn, and K.W. Bowyer. PCA-based face recognition in infrared im-

agery: baseline and comparative studies. In Proceedings of the IEEE International
Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, 17 October

2003, pp 127–134.
191. A. Srivastava and X. Liu Statistical hypothesis pruning for recognizing faces from

infrared images. Journal of Image and Vision Computing, 21(7):651–661, 2003.
192. P. Buddharaju, I. Pavlidis, and I. Kakadiaris. Face recognition in the thermal infrared

spectrum. In Proceedings of the Joint IEEE Workshop on Object Tracking and Classi-
fication Beyond the Visible Spectrum, Washington, DC, June 2004.

193. J. Heo, S.G. Kong, B.R. Abidi, and M.A. Abidi. Fusion of visual and thermal signa-

tures with eyeglass removal for robust face recognition. In Proceedings of the Joint
IEEE Workshop on Object Tracking and Classification Beyond the Visible Spectrum,

Washington, DC, June 2004.
194. A. Gyaourova, G. Bebis, and I. Pavlidis. Fusion of infrared and visible images for

face recognition. In Proceedings of the 8th European Conference on Computer Vision,

Prague, Czech Republic, May 2004.
195. D.A. Socolinsky and A. Selinger. Thermal face recognition in an operational scenario.

In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 2, Washington, DC, June 2004, pp 1012–1019.

196. J.G. Wang, E. Sung, and R. Venkateswarlu. Registration of infrared and visible-

spectrum imagery for face recognition. In Proceedings of the 6th IEEE International
Conference on Automatic Face and Gesture Recognition, Seoul, Korea, May 2004, pp

638–644.
197. X. Chen, P. Flynn, and K. Bowyer. IR and visible light face recognition. Computer

Vision and Image Understanding, 99(3):332–358, 2005.
198. S.G. Kong, J. Heo, B.R. Abidi, J. Paik, and M.A. Abidi. Recent advances in visual

and infrared face recognition – a review. Computer Vision and Image Understanding,

97(1):103–135, 2005.
199. Lin C.L. and Fan K.C. Biometric verification using thermal images of palm-dorsa vein

patterns. IEEE Transactions on Circuits and Systems for Video Technology, 14(2):199–

213, 2004.
200. S.K. Im, H.S. Choi, and S.W. Kim. A direction-based vascular pattern extraction algo-

rithm for hand vascular pattern verification. ETRI Journal, 25(2):101–108, 2003.
201. T. Shimooka and K. Shimizu. Artificial immune system for personal identification with

finger vein pattern. In Proceedings of the 8th International Conference on Knowledge-
Based Intelligent Information and Engineering Systems. Lecture Notes in Computer
Science, volume 3214, September 2004, pp 511–518.

202. N. Miura, A. Nagasaka, and T. Miyatake. Feature extraction of finger vein patterns

based on iterative line tracking and its application to personal identification. Systems
and Computers in Japan, 35(7):61–71, 2004.

203. F.J. Prokoski and R. Riedel. Infrared identification of faces and body parts. In Biomet-
rics: Personal Identification in Networked Society. Dordecht: Kluwer, 1998 (Chapter 9).

204. P. Buddharaju, I.T. Pavlidis, and P. Tsiamyrtzis. Physiology-based face recognition. In

Proceedings of the IEEE Advanced Video and Signal Based Surveillance, Como, Italy,

September 2005.



258 References

205. C. Manohar. Extraction of Superficial Vasculature in Thermal Imaging. Master’s The-

sis, University of Houston, Houston, TX, December 2004.

206. B.J. Moxham, C. Kirsh, B. Berkovitz, G. Alusi, and T. Cheeseman. Interactive Head
and Neck (CD-ROM). London: Primal Pictures, 2002.

207. I. Pavlidis, P. Tsiamyrtzis, C. Manohar, and P. Buddharaju. Biometrics: face recognition

in thermal infrared. In Biomedical Engineering Handbook. Boca Raton: CRC, 2006.

208. L. Di Stefano and A. Bulgarelli. Simple and efficient connected components label-

ing algorithm. In Proceedings of the International Conference on Image Analysis and
Processing, Venice, Italy, September 1999, pp 322–327.

209. D. Maltoni, D. Maio, A.K. Jain, and S. Prabhakar. Handbook of Fingerprint Recogni-
tion. Berlin Heidelberg New York: Springer, 2003.

210. M.A. Oliveira and N.J. Leite. Reconnection of fingerprint ridges based on morpholog-

ical operators and multiscale directional information. In Proceedings of 17th Brazilian
Symposium on Computer Graphics and Image Processing, Curitiba, PR, Brazil, Octo-

ber 2004, pp 122–129.

211. B.K. Jang and R.T. Chin. One-pass parallel thinning: analysis, properties, and quan-

titative evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

14(11):1129–1140, 1992.

212. S. Yang and I.M. Verbauwhede. A secure fingerprint matching technique. In Proceed-
ings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications,

Berkley, CA, 2003, pp 89–94.

213. X. Jiang and W.Y. Yau. Fingerprint minutiae matching based on the local and global

structures. In Proceedings of the 15th International Conference on Pattern Recognition,

volume 2, Barcelona, Catalonia, Spain, September 2000, pp 1038–1041.

214. M. Turk and A.P. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-
science, 3(1):71–86, 1991.

215. W. Zhao, R. Chellappa, and A. Rosenfeld. Face recognition: a literature survey. ACM
Computing Surveys, 35:399–458, 2003.

216. P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fisherfaces: recog-

nition using class specific linear projection. IEEE Transactions on Pattern Analysis and
Machine Intelligence , 19:711–720, 1997.

217. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-
science, 3(1):71–86, 1991.

218. A. Pentland, B. Moghaddam, and T. Starner. View-based and modular eigenspaces for

face recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 1994, pp 84–91.

219. W. Zhao, A. Krishnaswamy, R. Chellappa, D. Swets, and L. Weng. Discriminant analy-

sis of principal components for face recognition. In Proceedings of IEEE International
Conference on Automatic Face and Gesture Recognition, 1998, pp 336–341.

220. J. Huang, P. Yuen, C. Chen, W. Sheng, and J.H. Lai. Kernel subspace LDA with op-

timized kernel parameters on face recognition. In Proceedings of IEEE International
Conference on Automatic Face and Gesture Recognition, 2004, pp 327–332.

221. M.-H. Yang, N. Ahuja, and D. Kriegman. Face recognition using kernel eigenfaces.

Advances in NIPS 14, 2002.

222. M.-H. Yang, N. Ahuja, and D. Kriegman. Kernel eigenfaces vs. kernel fisherfaces: face

recognition using kernel methods. In Proceedings of IEEE International Conference on
Automatic Face and Gesture Recognition (FGR), 2002, pp 215–220.

223. J. Yang, Z. Jin. J.-Y. Yang, D. Zhang, and A.F. Frangi. Essence of kernel fisher discrim-

inant: KPCA plus LDA. Pattern Recognition, 37(10):2097–2100, 2004.



References 259

224. D.A. Socolinsky and A. Selinger. Thermal face recognition in an operational sce-

nario. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2004, pp 1012–1019.

225. X. Chen, P. Flynn, and K. Bowyer. IR and visible light face recognition. Computer
Vision and Image Understanding, 99(3):332–358, 2005.

226. S. Singh, A. Gyaourova, G. Bebis, and I. Pavlidis. Infrared and visible image fusion for

face recognition. In Proceedings of the International Society for Optical Engineering,
Biometric Technology for Human Identification, 2004, pp 585–596.

227. A.V. Oppenheim and J.S. Lim. The importance of phase in signals. In Proceedings of
IEEE, volume 69, 1981, pp 529–541.

228. P. Kovesi. Edges are not just steps. In Proceedings of Asian Conference on Computer
Vision (ACCV), 2002, pp 23–25.

229. 3dMD (http://www.3dmd.com/), 2006.

230. R. Gottumukkal and V. Asari. An improved face recognition technique based on mod-

ular PCA approach. Pattern Recognition Letters, 25(4):429–436, 2004.

231. H. Li, B.S. Manjunath, and S.K. Mitra. Multi-sensor image fusion using the wavelet

transform. In Proceedings of IEEE International Conference on Image Processing
(ICIP), volume 1, 1994, pp 51–55.

232. S. Davis and P. Mermelstein. Comparison of parametric representations for monosyl-

labic word recognition. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 28(4):357–366, 1980.

233. D. Reynolds, T. Quatieri, and R. Dunn. Speaker verification using adapted Gaussian

mixture models. Digital Signal Processing, 10(1–3):19–41, 2000.

234. A. Park and T. Hazen. ASR dependent techniques for speaker identification. In Pro-
ceedings of International Conference on Spoken Language Processing, Denver, CO,

September 2002, pp 1337–1340.

235. A. Park and T. Hazen. A comparison of normalization and training approaches for

ASR-dependent speaker identification. In Proceedings of International Conference on
Spoken Language Processing, Jeju Island, Korea, October 2004.

236. W. Zhao, R. Chellappa, P. Phillips, and A. Rosenfeld. Face recognition: a literature

survey. ACM Computing Surveys, 35(4):399–458, 2004.

237. B. Heisele, P. Ho, and T. Poggio. Face recognition with support vector machines:

global versus component-based approach. In Proceedings of International Conference
on Computer Vision, volume 2, Vancouver, Canada, July 2001, pp 688–694.

238. P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple fea-

tures. In Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Kauai, HI, December 2001, pp 511–518.

239. B. Heisele, T. Serre, S. Prentice, and T. Poggio. Hierarchical classification and feature

reduction for fast face detection with support vector machines. Pattern Recognition,

36:2007–2017, 2003.

240. V. Vapnik. The Nature of Statistical Learning Theory. Berlin Heidelberg New York:

Springer, 1995.

241. T. Hazen, E. Weinstein, and A. Park. Towards robust person recognition on handheld

devices using face and speaker identification technologies. In Proceedings of Interna-
tional Conference on Multimodal Interfaces, Vancouver, Canada, November 2003.

242. T. Hazen, E. Weinstein, R. Kabir, A. Park, and B. Heisele. Multi-modal face and speaker

identification on a handheld device. In Proceedings of the Workshop on Multimodal
User Authentication, Santa Barbara, CA, December 2003.



260 References

243. T. Hazen. Visual model structures and synchrony constraints for audio–visual

speech recognition. IEEE Transactions on Audio, Speech and Language Processing,

14(3):1082–1089, 2006.

244. E. Weinstein, P. Ho, B. Heisele, T. Poggio, K. Steele, and A. Agarwal. Handheld face

identification technology in a pervasive computing environment. In Short Paper Pro-
ceedings, Pervasive 2002, Zurich, Switzerland, August 2002, pp 48–54.

245. S. McKenna and S. Gong. Recognising moving faces. In H. Wechsler, P. Phillips,

V. Bruce, F. Soulie, and T. Huang (Eds.). Face Recognition: From Theory to Applica-
tions. Berlin Heidelberg New York: Springer, 1998, pp 578–588.

246. T. Hazen, K. Saenko, C. La, and J. Glass. A segment-based audio–visual speech recog-

nizer: data collection, development and initial experiments. In Proceedings of Interna-
tional Conference on Multimodal Interfaces, State College, PA, October 2004.

247. C. Bregler and Y. Konig. Eigenlips for robust speech recognition. In Proceedings
of International Conference on Acoustics, Speech, and Signal Processing, volume 2,

Adelaide, Australia, April 1998, pp 669–672.

248. J. Ming and F. Smith. A posterior union model for improved robust speech recogni-

tion in nonstationary noise. In Proceedings of International Conference on Acoustics,
Speech, and Signal Processing, volume 1, Hong Kong, April 2003, pp 420–423.

249. J. Ming, T. Hazen, and J. Glass. Speaker verification over handheld devices with realis-

tic noisy speech data. In Proceedings of International Conference on Acoustics, Speech,
and Signal Processing, Toulouse, France, May 2006.

250. R. Woo, A. Park, and T. Hazen. The MIT mobile device speaker verification corpus:

data collection and preliminary experiments. In Proceedings of Odyssey, The Speaker
& Language Recognition Workshop, San Juan, PR, June 2006.

251. P.J. Phillips, A. Martin, C.L. Wilson, and M. Przybocki. An introduction to evaluating

biometric systems. IEEE Computer, 33(2):56–63, 2000.

252. P.J. Phillips, P. Grother, R.J. Micheals, D.M. Blackburn, E. Tabassi, and J.M. Bone.

FRVT 2002: evaluation report. Technical Report, March 2003.

253. P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J. Marques,

J. Min, and W. Worek. Overview of the face recognition grand challenge. In Proceed-
ings of IEEE Computer Vision and Pattern Recognition, San Diego, CA, 20–25 June

2005, pp 947–954.

254. Face recognition vendor test 2006 (http://www.frvt.org/FRVT2006/).

255. X. Lu and A.K. Jain. Deformation modeling for robust 3D face matching. In Proceed-
ings of IEEE Computer Vision and Pattern Recognition, New York, NY, 17–22 June

2006, pp 1377–1383.

256. S. Wang, Y. Wang, M. Jin, X. Gu, and D. Samaras. 3D surface matching and recogni-

tion using conformal geometry. In Proceedings of IEEE Computer Vision and Pattern
Recognition, New York, NY, 17–22 June 2006, pp 2453–2460.

257. T. Russ, C. Boehnen, and T. Peters. 3D face recognition using 3D alignment for PCA. In

Proceedings of IEEE Computer Vision and Pattern Recognition, New York, NY, 17–22

June 2006, pp 1391–1398.

258. W.Y. Lin, K.C. Wong, N. Boston, and Y.H. Hu. Fusion of summation invariants in

3D human face recognition. In Proceedings of IEEE Computer Vision and Pattern
Recognition, New York, NY, 17–22 June 2006, pp 1369–1376.

259. M. Husken, M. Brauckmann, S. Gehlen, and C. von der Malsburg. Strategies and

benefits of fusion of 2D and 3D face recognition. In Proceedings of IEEE Workshop
on Face Recognition Grand Challenge Experiments, San Diego, CA, 20–25 June 2005,

pp 174–181.



References 261

260. T. Maurer, D. Guigonis, I. Maslov, B. Pesenti, A. Tsaregorodtsev, D. West, and

G. Medioni. Performance of Geometrix ActiveIDTM 3D face recognition engine on the

FRGC data. In Proceedings of IEEE Workshop on Face Recognition Grand Challenge
Experiments, San Diego, CA, 20–25 June 2005.

261. A.M. Bronstein, M.M. Bronstein, and R. Kimmel. Three-dimensional face recognition.

International Journal of Computer Vision, 64(1):5–30, 2005.
262. A.M. Bronstein, M.M. Bronstein, and R. Kimmel. Robust expression-invariant face

recognition from partially missing data. In Proceedings of European Conference on
Computer Vision, Graz, Austria, May 2006, pp 7–13.

263. A. Iannarelli. Ear Identification. Forensic Identification Series. Fremont, CA:

Paramount, 1989.
264. M. Burge and W. Burger. Ear biometrics for machine vision. In Proceedings of 21th

Workshop Austrian Association for Pattern Recognition, Hallstatt, May 1997, pp 822–

826.
265. K.I. Chang, K.W. Bowyer, S. Sarkar, and B. Victor. Comparison and combination of

ear and face images in appearance-based biometrics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(9):1160–1165, 2003.

266. P. Yan and K.W. Bowyer. Empirical evaluation of advanced ear biometrics. In

Proceedings of IEEE Computer Vision and Pattern Recognition, San Diego, CA, 2005,

pp 41–48.
267. P. Yan and K.W. Bowyer. Multi-biometrics 2D and 3D ear recognition. In Proceedings

of Audio- and Video-Based Biometric Person Authentication, Rye Brook, NY, 2005, pp

503–512.
268. P. Yan, K.W. Bowyer, and K.I. Chang. ICP-based approaches for 3D ear recognition. In

Proceedings of SPIE Biometric Technology for Human Identification II, volume 5779,

Orlando, FL, 2005, pp 282–291.
269. P. Yan and K.W. Bowyer. Biometric recognition using three-dimensional ear shape.

Technical Report 1, University of Notre Dame, 2006.
270. L. Farkas. Anthropometry of the Head and Face. New York: Raven, 1994.
271. I.A. Kakadiaris, M. Papadakis, L. Shen, D. Kouri, and D.K. Hoffman. m-HDAF multi-

resolution deformable models. In Proceedings of 14th International Conference on
Digital Signal Processing, Santorini, Greece, 1–3 July 2002, pp 505–508.

272. I.A. Kakadiaris, L. Shen, M. Papadakis, D. Kouri, and D.K. Hoffman. g-HDAF multi-

resolution deformable models for shape modeling and reconstruction. In Proceedings
of British Machine Vision Conference, Cardiff, UK, 2–5 September 2002, pp 303–312.

273. X. Gu, S. Gortler, and H. Hoppe. Geometry images. In Proceedings of SIGGRAPH,

San Antonio, TX, July 2002, pp 355–361.
274. I.A. Kakadiaris, G. Passalis, T. Theoharis, G. Toderici, I. Konstantinidis, and

N. Murtuza. Multimodal face recognition: combination of geometry with physiolog-

ical information. In Proceedings of IEEE Computer Vision and Pattern Recognition,

volume 2, San Diego, CA, 20–25 June 2005, pp 1022–1029.
275. A. Johnson. Spin-Images: A Representation for 3-D Surface Matching. Ph.D. Thesis,

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August 1997.
276. P.J. Besl and N.D. McKay. A method for registration of 3-D shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.
277. G. Turk and M. Levoy. Zippered polygon meshes from range images. In Proceedings

of SIGGRAPH, Orlando, FL, 1994, pp 311–318.
278. D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The trimmed iterative closest

point algorithm. In Proceedings of International Conference on Pattern Recognition,

volume 3, Quebec, Canada, 2002, pp 545–548.



262 References

279. G. Papaioannou, E.A. Karabassi, and T. Theoharis. Reconstruction of three-

dimensional objects through matching of their parts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(1):114–124, 2002.

280. D. Metaxas and I.A. Kakadiaris. Elastically adaptive deformable models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(10):1310–1321, 2002.

281. C. Mandal, H. Qin, and B. Vemuri. Dynamic smooth subdivision surfaces for data

visualization. In Proceedings of IEEE Visualization, October 1997, pp 371–377.

282. C. Mandal, H. Qin, and B.C. Vemuri. A novel FEM-based dynamic framework for

subdivision surfaces. Computer-Aided Design, 32(8–9):479–497, 2000.

283. D. Zorin and P. Schroeder. Subdivision for modeling and animation. In SIGGRAPH
Course Notes, New Orleans, LA, 2000.

284. J. Warren and H. Weimer. Subdivision Methods for Geometric Design: A Constructive
Approach. Series in Computer Graphics. Los Altos, CA: Morgan Kaufmann, 2001.

285. R.A. Finkel and J.L. Bentley. Quad trees. A data structure for retrieval of composite

keys. Acta Informatica, 4(1):1–9, 1974.

286. I.A. Kakadiaris, G. Passalis, G. Toderici, N. Karampatziakis, N. Murtuza, Y. Lu, and

T. Theoharis. Evaluation of 3D face recognition in the presence of facial expressions:

an annotated deformable model approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2006 (in press).

287. I.A. Kakadiaris, G. Passalis, G. Toderici, N. Karampatziakis, N. Murtuza, Y. Lu, and

T. Theoharis. Expression-invariant multispectral face recognition: you can smile now!

In Proceedings of SPIE Defense and Security Symposium, Orlando, FL, 17–21 April

2006.

288. J. Portilla and E.P. Simoncelli. A parametric texture model based on joint statistic of

complex wavelet coefficients. International Journal of Computer Vision, 40:49–71,

2000.

289. E.P. Simoncelli, W.T. Freeman, E.H. Adelson, and D.J. Heeger. Shiftable multi-scale

transforms. IEEE Trans Information Theory, 38:587–607, 1992.

290. Z. Wang and E.P. Simoncelli. Translation insensitive image similarity in complex

wavelet domain. In Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, volume 2, Philadelphia, PA, March 2005, pp 573–576.

291. Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:

from error visibility to structural similarity. IEEE Transactions on Image Processing,

13(4):600–612, 2004.

292. Intel. Open computer vision library (http://sourceforge.net/projects/
opencvlibrary/), 2005.

293. X. Chen, T. Faltemier, P.J. Flynn, and K.W. Bowyer. Human face modeling and recog-

nition through multi-view high resolution stereopsis. In Proceedings of IEEE Computer
Society Workshop on Biometrics, New York, NY, 17–18 June 2006, pp 50–55.

294. H. Chen and B. Bhanu. Shape model-based 3D ear detection from side face range

images. In Proceedings of IEEE Computer Vision and Pattern Recognition, Washington,

DC, 2005, p 122.

295. H. Chen, B. Bhanu, and R. Wang. Performance evaluation and prediction for 3D ear

recognition. In Proceedings of Audio- and Video-Based Biometric Person Authentica-
tion, Rye Brook, NY, 2005, pp 748–757.

296. A. Kale, A. Roy-chowdhury, and R. Chellappa. Fusion of gait and face for human

identification. In Proceedings of Acoustics, Speech, and Signal Processing, volume 5,

2004, pp 901–904.



References 263

297. G. Shakhnarovich and T. Darrell. On probabilistic combination of face and gait cues for

identification. In Proceedings of Automatic Face and Gesture Recognition, volume 5,

2002, pp 169–174.

298. G. Shakhnarovich, L. Lee, and T. Darrell. Integrated face and gait recognition from

multiple views. In Proceedings of Computer Vision and Pattern Recognition, volume 1,

2001, pp 439–446.

299. X. Zhou, B. Bhanu, and J. Han. Human recognition at a distance in video by integrating

face profile and gait. In Proceedings of Audio- and Video-Based Biometric Person
Authentication, 2005, pp 533–543.

300. B. Bhanu and X. Zhou. Face recognition from face profile using dynamic time warping.

In Proceedings of International Conference on Pattern Recognition, volume 4, 2004,

pp 499–502.

301. J. Han and B. Bhanu. Individual recognition using gait energy image. IEEE Transac-
tions Pattern Analysis and Machine Intelligence, 28(2):316–322, 2006.

302. J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE Transactions
Pattern Analysis and Machine Intelligence, 20:226–239, 1998.

303. Y. Zuev and S. Ivanon. The voting as a way to increase the decision reliability. Journal
of the Franklin Institute, 336(2):361–378, 1999.

304. J. Han and B. Bhanu. Performance prediction for individual recognition by gait. Pattern
Recognition, 2005(5):615–624, 2005.

305. R.Y. Tsai and T.S. Huang. Multiframe image restoration and registration. In Advances
in Computer Vision and Image Processing. Greenwich, CT: JAI, 1984.

306. P.A. Hewitt and D. Dobberfuhl. The science and art of proportionality. Science Scope,

30–31, 2004.

307. M. Irani and S. Peleg. Motion analysis for image enhancement: resolution, occlusion

and transparency. Journal of Visual Communication and Image Representation, 4:324–

335, 1993.

308. L.D. Harmon and W.F. Hunt. Automatic recognition of human face profiles. Computer
Graphics and Image Processing, 6:135–156, 1977.

309. L.D. Harmon, M.K. Khan, R. Lasch, and P.F. Ramig. Machine identification of human

faces. Pattern Recognition, 13:97–110, 1981.

310. D. O’Mara. Automated Facial Metrology. Ph.D. Thesis, The University of Western

Australia.

311. J.C. Campos, A.D. Linney, and J.P. Moss. The analysis of facial profiles using scale

space techniques. Pattern Recognition, 26:819–824, 1993.

312. B. Dariush, S.B. Kang, and K. Waters. Spatiotemporal analysis of face profiles: detec-

tion, segmentation, and registration. In Proceedings of IEEE Conference on Automatic
Face and Gesture Recognition, 1998, pp 248–253.

313. T. Akimoto, Y. Suenaga, and R.S. Wallace. Automatic creation of 3d facial models.

IEEE Transactions Computer Graphics and Applications, 13:16–22, 1993.

314. F. Galton. Numeralised profiles for classification and recognition. Nature, 83:127–130,

1910.

315. E. Keogh. Exact indexing of dynamic time warping. In Proceedings of Conference on
Very Large Data Bases, August 2002.

316. S.B. Needleman and C.D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequences of two proteins. Journal of Molecular Biology,

48:443–453, 1977.

317. J.J. Little and J.E. Boyd. Recognizing people by their gait: the shape of motion. Videre:
Journal of Computer Vision Research, 1(2):1–32, 1998.



264 References

318. A. Sundaresan, A. Roy-Chowdhury, and R. Chellappa. A hidden Markov model based

framework for recognition of humans from gait sequences. In Proceedings of Interna-
tional Conference Image Processing, volume 2, 2003, pp 93–96.

319. P.S. Huang, C.J. Harris, and M.S. Nixon. Recognizing humans by gait via parameteric

canonical space. Artificial Intelligence in Engineering, 13:359–366, 1999.
320. S. Sarkar, P.J. Phillips, Z. Liu, I.R. Vega, P. Grother, and K.W. Bowyer. The humanid

gait challenge problem: data sets, performance, and analysis. IEEE Transactions Pat-
tern Analysis and Machine Intelligence, 27(2):162–177, 2005.

321. R.T. Collins, R. Gross, and J. Shi. Silhouette-based human identification from body

shape and gait. In Proceedings of IEEE Conference on Automatic Face and Gesture
Recognition, 2002, pp 351–356.

322. X. Zhou and B. Bhanu. Feature fusion of face and gait for human recognition at a

distance in video. In Proceedings of IEEE International Conference on Pattern Recog-
nition, 2006.

323. X. Zhou and B. Bhanu. Integrating face and gait for human recognition. In Proceedings
of Workshop on Biometrics held in conjunction with the IEEE Conference on Computer
Vision and Pattern Recognition, 2006, pp 55–62.

324. R. Bolle, J. Connell, S. Pankanti, N. Ratha, and A. Senior. Guide to Biometrics. Berlin

Heidelberg New York: Springer, 2003.
325. A.K. Jain, R. Bolle, and S. Pankanti (Eds.). Biometrics: Personal Identification in

Networked Society. Dordecht: Kluwer, 1999.
326. A.K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition. IEEE

Transactions on Circuits and Systems for Video Technology. Special Issue on Image-
and Video-Based Biometrics, 14(1):4–20, 2004.

327. R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. New York: Wiley, 2001.
328. E. Rood and A.K. Jain. Biometric research agenda: report of the NSF workshop. In

Workshop for a Biometric Research Agenda, Morgantown, WV, July 2003.
329. A.K. Jain, S. Pankanti, S. Prabhakar, L. Hong, and A. Ross. Biometrics: a grand chal-

lenge. In Proceedings of International Conference on Pattern Recognition (ICPR),
volume 2, Cambridge, UK, August 2004, pp 935–942.

330. M. Golfarelli, D. Maio, and D. Maltoni. On the error-reject tradeoff in biometric ver-

ification systems. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(7):786–796, 1997.
331. A. Eriksson and P. Wretling. How flexible is the human voice? A case study of mimicry.

In Proceedings of the European Conference on Speech Technology, Rhodes, 1997,

pp 1043–1046.
332. W.R. Harrison. Suspect Documents: Their Scientific Examination. Chicago, IL: Nelson-

Hall, 1981.
333. T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino. Impact of artificial gummy

fingers on fingerprint systems. In Optical Security and Counterfeit Deterrence Tech-
niques IV, Proceedings of SPIE, volume 4677, San Jose, CA, January 2002, pp 275–289.

334. T. Putte and J. Keuning. Biometrical fingerprint recognition: don’t get your fingers

burned. In Proceedings of IFIP TC8/WG8.8 Fourth Working Conference on Smart Card
Research and Advanced Applications, 2000, pp 289–303.

335. N.K. Ratha, J.H. Connell, and R.M. Bolle. An analysis of minutiae matching strength.

In Proceedings of 3rd International Conference on Audio- and Video-Based Biometric
Person Authentication (AVBPA), Halmstad, Sweden, June 2001, pp 223–228.

336. L. Hong, A.K. Jain, and S. Pankanti. Can multibiometrics improve performance? In

Proceedings of IEEE Workshop on Automatic Identification Advanced Technologies
(AutoID), Summit, NJ, October 1999, pp 59–64.



References 265

337. A.K. Jain and A. Ross. Multibiometric systems. Communications of the ACM. Special
Issue on Multimodal Interfaces, 47(1):34–40, 2004.

338. A. Ross, K. Nandakumar, and A.K. Jain. Handbook of multibiometrics, 1st edition.

Berlin Heidelberg New York: Springer, 2006.
339. D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman, and A.K. Jain. FVC2004: third finger-

print verification competition. In Proceedings of International Conference on Biometric
Authentication (ICBA), Hong Kong, China, July 2004, pp 1–7.

340. C. Wilson, A.R. Hicklin, M. Bone, H. Korves, P. Grother, B. Ulery, R. Micheals,

M. Zoepfl, S. Otto, and C. Watson. Fingerprint vendor technology evaluation 2003:

summary of results and analysis report. NIST Technical Report NISTIR 7123, National

Institute of Standards and Technology, June 2004.
341. P.J. Phillips, P. Grother, R.J. Micheals, D.M. Blackburn, E. Tabassi, and J.M. Bone.

FRVT2002: overview and summary. Available at http://www.frvt.org/
FRVT2002, March 2003.

342. M. Przybocki and A. Martin. NIST speaker recognition evaluation chronicles. In

Odyssey: The Speaker and Language Recognition Workshop, Toledo, Spain, May 2004,

pp 12–22.
343. International Biometric Group. Independent testing of iris recognition technology:

final report. Available at http://www.biometricgroup.com/reports/
public/ITIRT.html, May 2005.

344. T.N. Palmer. Predicting uncertainty in forecasts of weather and climate. Reports on
Progress in Physics, 63:71–116, 2000.

345. G. Vachtsevanos, L. Tang, and J. Reimann. An intelligent approach to coordinated

control of multiple unmanned aerial vehicles. In Proceedings of 60th Annual Forum of
the American Helicopter Society, Baltimore, MD, June 2004.

346. R.S. Blum and Z. Liu (Eds.). Multi-Sensor Image Fusion and Its Applications. Boca

Raton, FL: CRC/Taylor & Francis Group, 2006.
347. M.A. Abidi and R.C. Gonzalez. Data Fusion in Robotics and Machine Intelligence.

New York: Academic, 1992.
348. A.H. Gunatilaka and B.A. Baertlein. Feature-level and decision-level fusion of nonco-

incidentally sampled sensors for land mine detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(6):577–589, 2001.

349. D.H. Wolpert. Stacked generalization. Technical Report LA-UR-90-3460, Los Alamos

National Laboratory, 1990.
350. H. Drucker, C. Cortes, L.D. Jackel, Y. LeCun, and V. Vapnik. Boosting and other

ensemble methods. Neural Computation, 6(6):1289–1301, 1994.
351. H. Bunke and A. Kandel (Eds.). Hybrid Methods in Pattern Recognition, volume 47 of

Machine Perception and Artificial Intelligence. Singapore: World Scientific, 2002.
352. M. Tan. Multi-agent reinforcement learning: independent vs. cooperative learning. In

M.N. Huhns and M.P. Singh (Eds.). Readings in Agents. San Francisco: CA: Morgan

Kaufmann, 1997, pp 487–494.
353. K. Woods, K. Bowyer, and W.P. Kegelmeyer. Combination of multiple classifiers using

local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 19(4):405–410, 1997.

354. J.A. Benediktisson and P.H. Swain. Consensus theoretic classification methods. IEEE
Transactions on Systems, Man and Cybernetics, 22(4):688–704, 1992.

355. S.S. Iyengar, L. Prasad, and H. Min. Advances in Distributed Sensor Technology.

Englewood Cliffs, NJ: Prentice-Hall, 1995.
356. R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of local

experts. Neural Computation, 3(1):79–87, 1991.



266 References

357. C. Chiang and H. Fu. A divide-and-conquer methodology for modular supervised

neural network design. In Proceedings of World Congress on Computational Intelli-
gence, Orlando, FL, June 1994, pp 119–124.

358. K.J. Arrow. Social Choice and Individual Values, 2nd edition. New York: Wiley, 1963.

359. L.I. Kuncheva. Combining Pattern Classifiers – Methods and Algorithms. New York:

Wiley, 2004.

360. J. Kittler, M. Hatef, R.P. Duin, and J.G. Matas. On combining classifiers. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(3):226–239, 1998.

361. L. Xu, A. Krzyzak, and C.Y. Suen. Methods for combining multiple classifiers and

their applications to handwriting recognition. IEEE Transactions on Systems, Man, and
Cybernetics, 22(3):418–435, 1992.

362. J. Ghosh. Multiclassifier systems: back to the future. In Proceedings of 3rd Interna-
tional Workshop on Multiple Classifier Systems, Cagliari, Italy, June 2002, pp 1–15.

363. C.C. Chibelushi, F. Deravi, and J.S. Mason. Voice and facial image integration for

speaker recognition. In R.I. Damper, W. Hall, and J.W. Richards (Eds.). Multimedia
Technologies and Future Applications. London: Pentech, 1994, pp 155–161.

364. R. Brunelli and D. Falavigna. Person identification using multiple cues. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 17(10):955–966, 1995.

365. J. Lee, B. Moghaddam, H. Pfister, and R. Machiraju. Finding optimal views for 3D face

shape modeling. In Proceedings of the IEEE International Conference on Automatic
Face and Gesture Recognition (FG), Seoul, Korea, May 2004, pp 31–36.

366. A. Kong, J. Heo, B. Abidi, J. Paik, and M. Abidi. Recent advances in visual and infrared

face recognition – a review. Computer Vision and Image Understanding, 97(1):103–

135, 2005.

367. X. Chen, P.J. Flynn, and K.W. Bowyer. IR and visible light face recognition. Computer
Vision and Image Understanding, 99(3):332–358, 2005.

368. D.A. Socolinsky, A. Selinger, and J.D. Neuheisel. Face recognition with visible and

thermal infrared imagery. Computer Vision and Image Understanding, 91(1–2):72–

114, 2003.

369. R.K. Rowe and K.A. Nixon. Fingerprint enhancement using a multispectral sensor. In

Proceedings of SPIE Conference on Biometric Technology for Human Identification II,
volume 5779, March 2005, pp 81–93.

370. Z. Pan, G. Healey, M. Prasad, and B. Tromberg. Face recognition in hyperspectral im-

ages. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12):1552–

1560, 2003.

371. G.L. Marcialis and F. Roli. Fingerprint verification by fusion of optical and capacitive

sensors. Pattern Recognition Letters, 25(11):1315–1322, 2004.

372. A. Ross, A.K. Jain, and J. Reisman. A hybrid fingerprint matcher. Pattern Recognition,

36(7):1661–1673, 2003.

373. X. Lu, Y. Wang, and A.K. Jain. Combining classifiers for face recognition. In IEEE
International Conference on Multimedia and Expo (ICME), volume 3, Baltimore, MD,

July 2003, pp 13–16.

374. S. Prabhakar and A.K. Jain. Decision-level fusion in fingerprint verification. Technical

Report MSU-CSE-00-24, Michigan State University, October 2000.

375. J. Jang, K.R. Park, J. Son, and Y. Lee. Multi-unit iris recognition system by image check

algorithm. In Proceedings of International Conference on Biometric Authentication
(ICBA), Hong Kong, July 2004, pp 450–457.

376. H. Hill, P.G. Schyns, and S. Akamatsu. Information and viewpoint dependence in face

recognition. Cognition, 62(2):201–222, 1997.



References 267

377. A. O’Toole, H. Bulthoff, N. Troje, and T. Vetter. Face recognition across large view-

point changes. In Proceedings of the International Workshop on Automatic Face- and
Gesture-Recognition (IWAFGR), Zurich, Switzerland, June 1995, pp 326–331.

378. U. Uludag, A. Ross, and A.K. Jain. Biometric template selection and update: a case

study in fingerprints. Pattern Recognition, 37(7):1533–1542, 2004.
379. C.C. Chibelushi, J.S.D. Mason, and F. Deravi. Feature-level data fusion for bimodal

person recognition. In Proceedings of the 6th International Conference on Image
Processing and Its Applications, volume 1, Dublin, Ireland, July 1997, pp 399–403.

380. E.S. Bigun, J. Bigun, B. Duc, and S. Fischer. Expert conciliation for multimodal person

authentication systems using Bayesian statistics. In Proceedings of 1st International
Conference on Audio- and Video-Based Biometric Person Authentication (AVBPA),
Crans-Montana, Switzerland, March 1997, pp 291–300.

381. K.I. Chang, K.W. Bowyer, and P.J. Flynn. An evaluation of multimodal 2D+3D

face biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(4):619–624, 2005.
382. National Institute of Standards and Technology. NIST biometric scores set. Available

at http://www.itl.nist.gov/iad/894.03/biometricscores, 2004.
383. A.T.B. Jin, D.N.C. Ling, and A. Goh. An integrated dual factor authenticator based

on the face data and tokenised random number. In Proceedings of 1st International
Conference on Biometric Authentication, Hong Kong, China, July 2004, pp 117–123.

384. A.K. Jain, K. Nandakumar, X. Lu, and U. Park. Integrating faces, fingerprints and soft

biometric traits for user recognition. In Proceedings of ECCV International Workshop
on Biometric Authentication (BioAW), volume LNCS 3087, Prague, Czech Republic.

Berlin Heidelberg New York: Springer, May 2004, pp 259–269.
385. C. Sanderson and K.K. Paliwal. Information fusion and person verification using speech

and face information. Research Paper IDIAP-RR 02-33, IDIAP, September 2002.
386. A.K. Jain and A. Ross. Fingerprint mosaicking. In IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), volume 4, Orlando, FL, May

2002, pp 4064–4067.
387. N.K. Ratha, J.H. Connell, and R.M. Bolle. Image mosaicing for rolled fingerprint con-

struction. In Proceedings of 14th International Conference on Pattern Recognition
(ICPR), volume 2, Brisbane, Australia, August 1998, pp 1651–1653.

388. Y.-L. Zhang, J. Yang, and H. Wu. A hybrid swipe fingerprint mosaicing scheme. In Pro-
ceedings of 5th International Conference on Audio- and Video-Based Biometric Person
Authentication (AVBPA) , Rye Brook, NY, July 2005, pp 131–140.

389. K. Choi, H. Choi, and J. Kim. Fingerprint mosaicking by rolling and sliding. In Pro-
ceedings of 5th International Conference on Audio- and Video-Based Biometric Person
Authentication (AVBPA), Rye Brook, NY, July 2005, pp 260–269.

390. A. Ross, S. Shah, and J. Shah. Image versus feature mosaicing: a case study in fin-

gerprints. In Proceedings of SPIE Conference on Biometric Technology for Human
Identification III, Orlando, FL, April 2006, pp 620208-1–620208-12.

391. F. Yang, M. Paindavoine, H. Abdi, and A. Monopoli. Development of a fast panoramic

face mosaicking and recognition system. Optical Engineering, 44(8):087005-1–

087005-10, 2005.
392. X. Liu and T. Chen. Geometry-assisted statistical modeling for face mosaicing. In

Proceedings of IEEE International Conference on Image Processing (ICIP), volume 2,

Barcelona, Spain, September 2003, pp 883–886.
393. X. Liu and T. Chen. Pose-robust face recognition using geometry assisted probabilistic

modeling. In Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), volume 1, San Diego, CA, June 2005, pp 502–509.



268 References

394. T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12):1615–1618,

2003.

395. R. Singh, M. Vatsa, A. Ross, and A. Noore. Performance enhancement of 2D face

recognition via mosaicing. In Proceedings of the 4th IEEE Workshop on Automatic
Identification Advanced Technologies (AuotID), Buffalo, NY, October 2005, pp 63–68.

396. R.-L. Hsu. Face Detection and Modeling for Recognition. Ph.D. Thesis, Department

of Computer Science and Engineering, Michigan State University, 2002.

397. F.I. Parke and K. Waters. Computer Facial Animation. Wellesley, MA: A.K. Peters,

1996.

398. A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition: a review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

399. P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature selection.

Pattern Recognition Letters, 15(11):1119–1124, 1994.

400. A.K. Jain and B. Chandrasekaran. Dimensionality and sample size considerations in

pattern recognition practice. In P.R. Krishnaiah and L.N. Kanal (Eds.). Handbook of
Statistics, volume 2. Amsterdam: North-Holland, 1982, pp 835–855.

401. A.K. Jain and D. Zongker. Feature selection: evaluation, application, and small sam-

ple performance. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(2):153–158, 1997.

402. A. Ross and R. Govindarajan. Feature level fusion using hand and face biometrics. In

Proceedings of SPIE Conference on Biometric Technology for Human Identification II,
volume 5779, Orlando, FL, March 2005, pp 196–204.

403. A. Kumar and D. Zhang. Biometric recognition using feature selection and combi-

nation. In Proceedings of 5th International Conference on Audio- and Video-Based
Biometric Person Authentication (AVBPA), Rye Brook, NY, July 2005, pp 813–822.

404. B. Son and Y. Lee. Biometric authentication system using reduced joint feature vector

of iris and face. In Proceedings of 5th International Conference on Audio- and Video-
Based Biometric Person Authentication (AVBPA), Rye Brook, NY, July 2005, pp 513–

522.

405. A. Kumar, D.C.M. Wong, H.C. Shen, and A.K. Jain. Personal verification using palm-

print and hand geometry biometric. In Proceedings of 4th International Conference
on Audio- and Video-Based Biometric Person Authentication (AVBPA), Guildford, UK,

June 2003, pp 668–678.

406. D.W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. Wiley

Series in Probability and Statistics. New York: Wiley-Interscience, 1992.

407. S.C. Dass, K. Nandakumar, and A.K. Jain. A principled approach to score level fusion

in multimodal biometric systems. In Proceedings of 5th International Conference on
Audio- and Video-Based Biometric Person Authentication (AVBPA), Rye Brook, NY,

July 2005, pp 1049–1058.

408. R.B. Nelsen. An Introduction to Copulas. Berlin Heidelberg New York: Springer, 1999.

409. U. Cherubini, E. Luciano, and W. Vecchiato. Copula Methods in Finance. New York:

Wiley, 2004.

410. R. Cappelli, D. Maio, and D. Maltoni. Combining fingerprint classifiers. In Proceedings
of 1st International Workshop on Multiple Classifier Systems, Cagliari, Italy, June 2000,

pp 351–361.

411. R. Snelick, U. Uludag, A. Mink, M. Indovina, and A.K. Jain. Large scale evaluation of

multimodal biometric authentication using state-of-the-art systems. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(3):450–455, 2005.



References 269

412. F.R. Hampel, P.J. Rousseeuw, E.M. Ronchetti, and W.A. Stahel. Robust Statistics: The
Approach Based on Influence Functions. New York: Wiley, 1986.

413. F. Mosteller and J.W. Tukey. Data Analysis and Regression: A Second Course in
Statistics. Reading, MA: Addison-Wesley, 1977.

414. P. Verlinde and G. Cholet. Comparing decision fusion paradigms using k-NN based

classifiers, decision trees and logistic regression in a multi-modal identity verification

application. In Proceedings of 2nd International Conference on Audio- and Video-
Based Biometric Person Authentication (AVBPA), Washington, DC, March 1999, pp

188–193.
415. S. Pigeon and L. Vandendrope. M2VTS multimodal face database release 1.00. Avail-

able at http://www.tele.ucl.ac.be/PROJECTS/M2VTS/m2fdb.html,

1996.
416. V. Chatzis, A.G. Bors, and I. Pitas. Multimodal decision-level fusion for person authen-

tication. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and
Humans, 29(6):674–681, 1999.

417. S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz. Fusion of face and speech data for

person identity verification. IEEE Transactions on Neural Networks, 10(5):1065–1075,

1999.
418. K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSDB: the extended

M2VTS database. In Proceedings of 2nd International Conference on Audio- and
Video-Based Biometric Person Authentication (AVBPA), Washington, DC, March 1999,

pp 72–77.
419. Y. Wang, T. Tan, and A.K. Jain. Combining face and iris biometrics for identity ver-

ification. In Proceedings of 4th International Conference on Audio- and Video-Based
Biometric Person Authentication (AVBPA), Guildford, UK, June 2003, pp 805–813.

420. A. Ross and A.K. Jain. Information fusion in biometrics. Pattern Recognition Letters,

24(13):2115–2125, 2003.
421. T.K. Ho, J.J. Hull, and S.N. Srihari. Decision combination in multiple classifier sys-

tems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1):66–75,

1994.
422. A. Agresti. An Introduction to Categorical Data Analysis. New York: Wiley, 1996.
423. J. Daugman. Combining multiple biometrics. Available at http://www.cl.cam.

ac.uk/users/jgd1000/combine/combine.html, 2000.
424. L. Lam and C.Y. Suen. Application of majority voting to pattern recognition: an analy-

sis of its behavior and performance. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A: Systems and Humans, 27(5):553–568, 1997.

425. Y.S. Huang and C.Y. Suen. Method of combining multiple experts for the recognition

of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(1):90–94, 1995.

426. L.I. Kuncheva, C.J. Whitaker, C.A. Shipp, and R.P.W. Duin. Limits on the majority

vote accuracy in classifier fusion. Pattern Analysis and Applications, 6(1):22–31, 2003.
427. P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under

zero-one loss. Machine Learning, 29(2–3):103–130, 1997.
428. G. Rogova. Combining the results of several neural network classifiers. Neural Net-

works, 7(5):777–781, 1994.
429. L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin. Decision templates for multiple classifier

fusion: an experimental comparison. Pattern Recognition, 34(2):299–314, 2001.
430. L.I. Kuncheva, C.J. Whitaker, C.A. Shipp, and R.P.W. Duin. Is independence good for

combining classifiers? In Proceedings of International Conference on Pattern Recog-
nition (ICPR), volume 2, Barcelona, Spain, 2000, pp 168–171.



270 References

431. R. Sharma, V.I. Pavlovic, and T.S. Huang. Toward multimodal human–computer inter-

face. Proceedings of the IEEE, 86(5):853–869, 1998.
432. A.K. Jain, R. Bolle, and S. Pankanti (Eds.). Introduction to Biometrics: Personal Iden-

tification in Networked Society. Dordecht: Kluwer, 1999.
433. J. Daugman. The importance of being random: statistical principles of iris recognition.

Pattern Recognition, 36(2):279–292, 2003.
434. A.K. Jain, L. Hong, and R. Bolle. On-line fingerprint verification. IEEE Transactions

Pattern Analysis and Machine Intelligence, 19(4):302–313, 1997.
435. P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs fisherfaces: recogni-

tion using class specific linear projection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):711–720, 1997.

436. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-
science, 3(1):71–86, 1991.

437. S.Z. Li and A.K. Jain (Eds.). Handbook on Face Recognition. Berlin Heidelberg New

York: Springer, 2005.
438. A.K. Jain, A. Ross, and S. Pankanti. A prototype hand geometry-based verification

system. In International Conference on Audio- and Video-Based Biometric Person
Authentication (AVBPA), Washington, DC, 1999, pp 166–171.

439. N.A. Schmid and J.A. O’Sullivan. Thresholding method for reduction of dimensional-

ity. IEEE Transactions on Information Theory, 47(7):2903–2920, 2001.
440. J. Daugman. High confidence visual recognition of persons by a test of statisti-

cal independence. IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(11):1148–1161, 1993.
441. W. Shen, M. Surrette, and R. Khanna. Evaluation of automated biometrics-based identi-

fication and verification systems. Proceedings of the IEEE. Special Issue on Automated
Biometric Systems, 85(10):1464–1478, 1997.

442. Special Issue on Automated Biometric Systems. Proceedings of the IEEE, 85(9):1341–

1516, 1997.
443. R.P. Wildes. Iris recognition: an emerging biometric technology. Proceedings of the

IEEE. Special Issue on Automated Biometric Systems, 85(9):1347–1363, 1997.
444. A.K. Jain and A. Ross. Learning user-specific parameters in multibiometric system.

In International Conference on Image Processing, Rochester, NY, September 2002, pp

57–60.
445. A.K. Jain and A. Ross. Multibiometric systems. Communications of the ACM, 47(1):

34–40, 2004.
446. A.K. Jain, L. Hong, and Y. Kulkarni. A multimodal biometric system using fingerprint,

face, and speech. In International Conference on Audio- and Video-Based Biometric
Person Authentication (AVBPA), Washington, DC, 1999, pp 182–187.

447. S. Pakanti, S. Prabhakar, and A.K. Jain. On the individuality of fingerprint. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(8):1010–1025, 2002.

448. Biometrics: the future of identification. IEEE Computer Magazine, 33(2):46–81, 2000.
449. J.L. Wayman, Error-rate equations for the general biometric system. IEEE Robotics

and Automation Magazine, 6(1):35–48, 1999.
450. C.C. Leang and D.H. Johnson. On the asymptotic of m-hypothesis Bayesian detection.

IEEE Transactions on Information Theory, 43(1):280–282, 1997.
451. N.A. Schmid and J.A. O’Sullivan. Performance prediction methodology for biometric

systems using a large deviations approach. IEEE Transactions on Signal Processing,
Supplement on Secure Media, 52(10):3036–3045, 2004.

452. R.M. Gray. Entropy and Information Theory. Berlin Heidelberg New York: Springer,

1990.



References 271

453. J.A. O’Sullivan and N.A. Schmid. Performance analysis of physical signature authen-

tication. IEEE Transactions on Information Theory, 47(7):3034–3039, 2001.

454. J.A. Bucklew. Large Deviation Techniques in Decision, Simulation, and Estimation.

New York: Wiley, 1990.

455. A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Berlin

Heidelberg New York: Springer, 1998.

456. J.A. O’Sullivan, R.E. Blahut, and D.L. Snyder. Information theoretic image formation.

IEEE Transactions on Information Theory, 44(6):2094–2123, 1998.

457. J.A. O’Sullivan, R.E. Blahut, and D.L. Snyder. Information theoretic image formation.

IEEE Transactions on Information Theory, 44(6):2094–2123, 1998.

458. T.M. Cover and J.A. Thomas. Elements of Information Theory. New York: Wiley, 1991.

459. R.M. Gray. Toeplitz and Circulant Matrices: A Review. Electrical Engineering De-

partment, Stanford University, Stanford, CA 94305, 2000 (http://www-ee.
stanford.edu/∼gray/toeplitz.pdf).

460. J.R. Hoinville, R.S. Indeck, and M.W. Muller. Spatial noise phenomena of longitudinal

magnetic recording media. IEEE Transactions Magnetics, 28:3398–3406, 1992.

461. R.S. Indeck and E. Glavinas. Fingerprinting magnetic media. IEEE Transactions Mag-
netics, 29(6):4095–4097, 1993.



Index

AEM, 158

alignment, 144

ESA, 145

ICP, 145

spin images, 145

AND rule, 208

anisotropic diffusion, 96

annotated model

AM, 144

Area under the curve, 198

automation, 156

Bayes decision theory, 201

Bayes formula, 201

Bayes rule, 210

Bayesian decision fusion, 209

Bayesian framework, 93

Belief function, 210

Biocode, 192

biometric

fusion, 75, 77, 78, 80–83, 85, 87, 90

biometric fusion, 178

Biweight estimators, 205

black top-hat segmentation, 98

Borda count method, 207

Branch-and-bound search, 198

Capacity of a template, 187

Challenge–response mechanism, 189

challenges, 140

classifier combination, 177

Conditional independence, 210

Confusion matrix, 209

Continuous monitoring, 189

Copula fusion rule, 202

Correlation, 212

Curse of dimensionality, 192, 197

curvature, 172

data

preprocessing, see band-pass filter

Database Indexing, see Database Filtering

Decimal scaling, 203

Decision profile, 210

Decision template, 211

Degree of belief, 210

Dempster–Shafer theory of evidence, 210

Dimensionality reduction, 197, 198

Discriminant function, 209, 210

Double sigmoid normalization, 204

DTW, 173

Dual-factor authentication, 192

DWT, 115

dynamic programming matrix, 174

Dynamic Time Warping, 173

ear algorithm, 159

ear issues, 157

ear model, 158

efficiency, 156

eigenspace, 102

enrollment, 142

ESA, 159

Face, 18

face

appearance, 75, 80, 87–90

database, 43, 46–49, 84, 86

quality assessment/measure, 45, 55

recognition, 44, 50, 56

Face modeling, 196

face profile, 166

face profile recognition, 170

face recognition, biometrics,

information fusion, 1

Fault tolerance, 190

Feature normalization, 197



274 Index

Feature selection, 198

Feature transformation, 198

features

holistic, 78, 80, 85

local, 78–81, 85

fiducial points, 171

filter

band-pass, 75, 78–80, 85, 87, 88, 90

Filtering, 193

fitting, 145

FRGC, 140, 150, 164

Fusion

classifier-based, 206

decision-level, 208

density-based, 201

feature-level, 196

rank-level, 207

score-level, 200

sensor-level, 193

transformation-based, 202

fusion, 103, 115

Gait Energy Image, 176

gait recognition, 175

GEI, 176

Generalized density, 202

geometry image, 146

glasses, 75, 78, 83–87, 90

Hampel influence function, 205

high-resolution image, 167

Highest rank method, 207

Hybrid systems, 192

IAFIS, 185

ICP, 159

Illumination, 13

image

deblur, 44, 45, 54–56

denoise, 54, 55

enhancement, 44, 55

set matching, 75, 77, 78, 83, 87

sharpness measure, 44, 45, 50–55

image fusion, 114

Indexing, 193

indexing-verification scheme, 178

Iterative Closest Point algorithm, 194

Likelihood ratio, 201

Linear Discriminant Analysis, 199

Logistic function, 204

Logistic regression, 207

low-resolution image, 167

M2VTS multimodal database, 206

MAD, see Median absolute deviation

magnification

blur, 44, 49, 53, 54, 56

high magnification, 43, 44, 47–49, 52, 54

Majority voting, 208

Median absolute deviation, 198, 204

Median normalization, 197, 204

metadata, 146

metrics, 148

CW-SSIM, 148

fusion, 148

haar, 148

Min-max normalization, 197, 202

Mosaicing, 193

face, 195

Motion, 13

Multi-algorithm systems, 190

Multi-modal systems, 192

Multi-sample systems, 191

Multi-sensor systems, 190

Multi-unit systems, see Multi-instance

systems

Multiple classifier systems, 188

multispectral face recognition, 92

Naive Bayes rule, 210

Noise, 189

normalization, 176, 178

observation distance, 43, 44, 46–48

long range, 43, 44

occlusion

glasses, see glasses

OR rule, 208

Pattern recognition system, 185

preprocessing, 143

hole filling, 143

median cut, 143

smoothing, 143

subsampling, 143

Principal Component Analysis, 102, 199
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Product rule, 202

pyramid, 148

Recognition, 18

recognition, 142

recognition metric, 179

results

expressions, 152, 155

multisensor, 152

transforms, 152

Score normalization, 202

Sequential backward floating search, 198

Sequential backward selection, 198

Sequential forward floating search, 198

Sequential forward selection, 198

set

matching, see image set matching

spectrum

infrared, see thermal spectrum

thermal, 75, 76, 84, 86–90

visual, 75, 84, 86–90

Spoof attacks, 189

storage space, 156

Sum rule, 202

superficial blood vessels, 96

surveillance, 43–45, 48

Tanh normalization, 204

thermal infrared, 91

Thermal Minutia Points, 99

transforms

haar, 147

pyramid, 147

Two-quadrics, 204

UH, 150, 160, 161, 164

UND, 160, 161, 164

vascular network, 92

verification, 85, 88–90

Video, 18

voting, 114

wavelet, 114

Weighted majority voting, 209

XM2VTS multimodal database, 206

z-score normalization, 203


